Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted Sobolev inequalities on domains satisfying the chain condition


Author: Seng-Kee Chua
Journal: Proc. Amer. Math. Soc. 117 (1993), 449-457
MSC: Primary 46E35; Secondary 26D10
DOI: https://doi.org/10.1090/S0002-9939-1993-1140667-2
MathSciNet review: 1140667
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By similar methods of Iwaniec and Nolder (Hardy-Littlewood inequality for quasiregular mappings in certain domains in $ {\mathbb{R}^n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985)), we obtain weighted Sobolev inequalities on domains satisfying the Boman chain condition.


References [Enhancements On Off] (What's this?)

  • [1] Bogdan Bojarski, Remarks on Sobolev imbedding inequalities, Complex Analysis, Lecture Notes in Math., vol. 1351, Springer-Verlag, New York, 1989, pp. 52-68. MR 982072 (90b:46068)
  • [2] Sagun Chanillo and Richard L. Wheeden, Poincaré inequalities for a class of non-$ {A_p}$ weights, Indiana Math. J. (to appear).
  • [3] Seng-Kee Chua, Extension theorems on weighted Sobolev spaces (to appear). MR 1206339 (94a:46035)
  • [4] -, Extension theorems on weighted Sobolev spaces. II (to appear).
  • [5] -, Extension and restriction theorems on weighted Sobolev spaces, Ph.D. thesis, Rutgers University, 1991.
  • [6] Filippo Chiarenza and Michele Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. 93 (1985), 703-704. MR 776206 (86h:46052)
  • [7] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. (3) 54 (1987), 141-175. MR 872254 (88b:46056)
  • [8] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. MR 643158 (84i:35070)
  • [9] Ritva Hurri, Poincaré domains in $ {\mathbb{R}^n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71 (1988). MR 978019 (90a:30074)
  • [10] -, The weighted Poincaré inequalities, Math. Scand. 67 (1990), 145-160. MR 1081294 (92f:46039)
  • [11] T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $ {\mathbb{R}^n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282. MR 802488 (87d:30022)
  • [12] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [13] Peter Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. MR 631089 (83i:30014)
  • [14] Olli Martio and Jukka Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383-401. MR 565886 (81i:30039)
  • [15] Eric Sawyer and Richard L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. (to appear).
  • [16] Wayne Smith and David A. Stegenga, Hölder domains and Poincaré domains, Trans. Amer. Math. Soc. 319 (1990), 67-100. MR 978378 (90i:30012)
  • [17] Susan G. Staples, $ {L^p}$-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103-127. MR 997974 (90k:42024)
  • [18] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [19] Jan-Olov Stromberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Math., vol. 1381, Springer, New York, 1989. MR 1011673 (90j:42053)
  • [20] Alberto Torchinsky, Real-variable methods in harmonic analysis, Academic Press, New York, 1986. MR 869816 (88e:42001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 26D10

Retrieve articles in all journals with MSC: 46E35, 26D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1140667-2
Keywords: $ {A_p}$ weights, doubling weights, weighted Sobolev inequality, weighted Poincaré inequality, domain satisfying the Boman chain condition
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society