Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dense pure subgroups of locally compact groups


Author: M. I. Kabenyuk
Journal: Proc. Amer. Math. Soc. 117 (1993), 537-539
MSC: Primary 22B05
DOI: https://doi.org/10.1090/S0002-9939-1993-1145946-0
MathSciNet review: 1145946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a locally compact abelian (LCA) group has no proper dense pure subgroups if and only if it does not have proper dense subgroups. This solves a problem of Armacost.


References [Enhancements On Off] (What's this?)

  • [1] D. L. Armacost, The structure of locally compact abelian groups, Marcel Dekker, New York, 1981. MR 637201 (83h:22010)
  • [2] W. E. Dietrich, Jr., Dense decompositions of locally compact groups, Colloq. Math. 24 (1972), 147-151. MR 0318388 (47:6935)
  • [3] L. Fuchs, Infinite abelian groups, vol. I, Academic Press, New York, 1970. MR 0255673 (41:333)
  • [4] M. I. Kabenyuk, Dense subgroups of locally compact abelian groups, Sibirsk. Mat. Zh. 21 (1980), 202-203. MR 601207 (82b:22003)
  • [5] M. A. Khan, Chain conditions on subgroups of $ LCA$ groups, Pacific J. Math. 86 (1980), 517-534. MR 590565 (82b:22004)
  • [6] -, When are proper subgroups of $ LCA$ groups contained in maximal ones?, Proc. Amer. Math. Soc. 83 (1981), 131-137. MR 619998 (82m:22007)
  • [7] M. Rajagopalan and H. Subrahmanian, Dense subgroups of locally compact groups, Colloq. Math. 35 (1976), 289-292. MR 0417325 (54:5381)
  • [8] Y. Takahashi, Nonclosed pure subgroups of locally compact abelian groups, Proc. Amer. Math. Soc. 110 (1989), 845-849. MR 1021905 (91b:22005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22B05

Retrieve articles in all journals with MSC: 22B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1145946-0
Keywords: Locally compact abelian groups, pure subgroups, nonclosed subgroups, dense subgroups, dense direct summands
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society