Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Riesz potentials and the first eigenvalue


Author: Jie Cheng Chen
Journal: Proc. Amer. Math. Soc. 117 (1993), 683-685
MSC: Primary 58G11; Secondary 35P15, 46E35, 58G25
DOI: https://doi.org/10.1090/S0002-9939-1993-1110540-4
MathSciNet review: 1110540
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the boundedness of Riesz potentials on positively curved manifolds. As an application, we get the greatest lower bound of the essential spectrum of a positively curved manifold.


References [Enhancements On Off] (What's this?)

  • [1] J.-Ch. Chen, Heat kernels on positively curved manifolds, Ph.D. Thesis, Hangzhou Univ., 1987.
  • [2] J.-Ch. Chen and J.-Y. Li, A note on eigenvalues, Chinese Sci. Bull. 34 (1989); or J.-Ch. Chen, On a conjecture of S. T. Yau, ibid. 33 (1988). (Chinese) MR 1056801 (91g:58289)
  • [3] H. Donnelly, On the essential spectrum of a complete Riemannian manifold, Topology 20 (1981), 1-24. MR 592568 (81j:58081)
  • [4] J. F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds, Comm. Partial Differential Equations 11 (1986), 63-68. MR 814547 (87a:58155)
  • [5] H. P. Mckean, An upper bound to the spectrum of $ \Delta $ on a manifold of negative curvature, J. Differential Geom. 4 (1970), 359-366. MR 0266100 (42:1009)
  • [6] N. Lohoue, Puissances complexes de l'operateur de Laplace Beltrami, C. R. Acad. Sci. Paris Ser. A 290 (1980), 605-608. MR 572646 (81h:58062)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [8] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79. MR 705991 (84m:58138)
  • [9] R. Schoen and S. T. Yau, Differential geometry, Chinese Academic Press, 1988. (Chinese)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G11, 35P15, 46E35, 58G25

Retrieve articles in all journals with MSC: 58G11, 35P15, 46E35, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1110540-4
Keywords: Riesz potential, the first eigenvalue, positively curved manifold
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society