Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Periodic $ L\sp 2$-solutions of an integrodifferential equation in a Hilbert space


Author: Olof J. Staffans
Journal: Proc. Amer. Math. Soc. 117 (1993), 745-751
MSC: Primary 45J05; Secondary 34K15, 47G10, 47N20
DOI: https://doi.org/10.1090/S0002-9939-1993-1111439-X
MathSciNet review: 1111439
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a closed, densely defined operator in a Hilbert space $ X$, and let $ \mu ,\;\nu $, and $ \eta $ be finite, scalar-valued measures on $ {\mathbf{R}}$. Consider the abstract integrodifferential equation

$\displaystyle \int_{\mathbf{R}} {\frac{d} {{dt}}u(t - s)\mu (ds) + \int_{\mathb... ...+ \int_{\mathbf{R}} {Au(t - s)\eta (ds) = f(t),\qquad t \in {\mathbf{R}},} } } $

where $ f$ is a $ 2\pi $-periodic $ {L^2}$ function with values in $ X$. We give necessary and sufficient conditions for this equation to have a mild $ 2\pi $-periodic $ {L^2}$-solution with values in $ X$ for all $ f$, as well as necessary and sufficient conditions for it to have a strong solution for all $ f$. Furthermore, we give necessary and sufficient conditions for the operator mapping $ f$ into the periodic solution $ u$ to be compact. These results are applied to prove existence of periodic solutions of a nonlinear equation.

References [Enhancements On Off] (What's this?)

  • [1] T. A. Burton, T. Krisztin, and B. Zhang, Periodic solutions of an integrodifferential equation with application to heat flow (to appear). MR 1470482 (98h:34123)
  • [2] G. Gripenberg, S.-O. Londen, and O. J. Staffans, Volterra integral and functional equations, Cambridge Univ. Press, Cambridge, 1990. MR 1050319 (91c:45003)
  • [3] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York and Berlin, 1983. MR 710486 (85g:47061)
  • [4] O. J. Staffans, Some well-posed functional equations that generate semigroups, J. Differential Equations 58 (1985), 157-191. MR 794767 (87a:34088)
  • [5] -, Periodic solutions of an abstract integrodifferential equation, Functional Differential Equations and Related Topics (Proc. Internat. Conf., Kyoto 1990), World Scientific, Singapore, 1991, pp. 344-348.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45J05, 34K15, 47G10, 47N20

Retrieve articles in all journals with MSC: 45J05, 34K15, 47G10, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1111439-X
Keywords: Integrodifferential equation, well-posedness, periodic solutions, $ {L^2}$-multipliers, compact solution operator
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society