Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Periodic $ L\sp 2$-solutions of an integrodifferential equation in a Hilbert space

Author: Olof J. Staffans
Journal: Proc. Amer. Math. Soc. 117 (1993), 745-751
MSC: Primary 45J05; Secondary 34K15, 47G10, 47N20
MathSciNet review: 1111439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a closed, densely defined operator in a Hilbert space $ X$, and let $ \mu ,\;\nu $, and $ \eta $ be finite, scalar-valued measures on $ {\mathbf{R}}$. Consider the abstract integrodifferential equation

$\displaystyle \int_{\mathbf{R}} {\frac{d} {{dt}}u(t - s)\mu (ds) + \int_{\mathb... ...+ \int_{\mathbf{R}} {Au(t - s)\eta (ds) = f(t),\qquad t \in {\mathbf{R}},} } } $

where $ f$ is a $ 2\pi $-periodic $ {L^2}$ function with values in $ X$. We give necessary and sufficient conditions for this equation to have a mild $ 2\pi $-periodic $ {L^2}$-solution with values in $ X$ for all $ f$, as well as necessary and sufficient conditions for it to have a strong solution for all $ f$. Furthermore, we give necessary and sufficient conditions for the operator mapping $ f$ into the periodic solution $ u$ to be compact. These results are applied to prove existence of periodic solutions of a nonlinear equation.

References [Enhancements On Off] (What's this?)

  • [1] T. A. Burton and Bo Zhang, Periodic solutions of finite- and infinite-dimensional functional-differential equations, Finite- and infinite-dimensional dynamics (Kyoto, 1988) Lecture Notes Numer. Appl. Anal., vol. 15, Kinokuniya, Tokyo, 1996, pp. 1–19. MR 1470482
  • [2] G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319
  • [3] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
  • [4] Olof J. Staffans, Some well-posed functional equations which generate semigroups, J. Differential Equations 58 (1985), no. 2, 157–191. MR 794767,
  • [5] -, Periodic solutions of an abstract integrodifferential equation, Functional Differential Equations and Related Topics (Proc. Internat. Conf., Kyoto 1990), World Scientific, Singapore, 1991, pp. 344-348.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45J05, 34K15, 47G10, 47N20

Retrieve articles in all journals with MSC: 45J05, 34K15, 47G10, 47N20

Additional Information

Keywords: Integrodifferential equation, well-posedness, periodic solutions, $ {L^2}$-multipliers, compact solution operator
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society