Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The ideal determined by the unsymmetric game


Authors: L. Newelski and A. Rosłanowski
Journal: Proc. Amer. Math. Soc. 117 (1993), 823-831
MSC: Primary 03E15; Secondary 03E40, 04A15, 90D44
DOI: https://doi.org/10.1090/S0002-9939-1993-1112500-6
MathSciNet review: 1112500
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we study the ideal of all subsets of $ {\mathcal{X}^\omega }$ for which the second player has a winning strategy in the unsymmetric game. We describe its cardinal coefficients and the notions of forcing determined by it.


References [Enhancements On Off] (What's this?)

  • [B] J. E. Baumgartner, Iterated forcing, Proceedings of the Summer School in Set Theory (A. R. D. Mathias, ed.), Cambridge Univ. Press, Cambridge, 1983. MR 823775 (87c:03099)
  • [D] M. Davis, Infinite games of perfect information, Advances in Game Theory (M. Dresher, L. S. Shapley, and A. W. Tucker, eds.), Ann. of Math. Stud., vol. 52, Princeton Univ. Press, Princeton, NJ, 1964. MR 0170727 (30:965)
  • [F] D. Fremlin, Cichon's diagram, Seminaire Initiation a l'Analyse (G. Choquet, M. Rogalski, J. Saint Raymond, eds.), 23e annee, 1983/84, no. 5.
  • [J] T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [KLW] A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of $ \sigma $-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. MR 879573 (88f:03042)
  • [M] J. Mycielski, On the axiom of determinateness, Fund. Math. 59 (1966), 203-212. MR 0210603 (35:1489)
  • [R1] A. Rosłanowski, On game ideals, Colloq. Math. 59 (1990), 159-168. MR 1090647 (92e:04004)
  • [R2] -, Mycielski ideals generated by uncountable systems, preprint, 1990. MR 1007486 (91d:04001)
  • [V] J. E. Vaughan, Small uncountable cardinals and topology, Open Problems in Topology (G. M. Reed and J. van Mill, eds.), North Holland, Amsterdam, 1990. MR 1078636 (92c:54001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E15, 03E40, 04A15, 90D44

Retrieve articles in all journals with MSC: 03E15, 03E40, 04A15, 90D44


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1112500-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society