Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sufficient arithmetical condition for the ideal class group of an imaginary quadratic field to be cyclic


Author: Mākoto Ishibashi
Journal: Proc. Amer. Math. Soc. 117 (1993), 613-618
MSC: Primary 11R11; Secondary 11R29
DOI: https://doi.org/10.1090/S0002-9939-1993-1113641-X
MathSciNet review: 1113641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a sufficient arithmetical condition for the ideal class group of an imaginary quadratic field to be cyclic by using Ono's number.


References [Enhancements On Off] (What's this?)

  • [1] P. C. Baayen, P. Emde Boas, and D. Kruyswijk, A combinatorial problem of finite abelian groups. III, ZW 1969-008, Report Math. Centrum, Amsterdam, 1969.
  • [2] L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), 391-392. MR 0111741 (22:2603)
  • [3] A. Czogala, Arithmetical characterization of algebraic number fields with small class number, Math. Z. 176 (1981), 247-253. MR 607964 (82e:12006)
  • [4] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330. MR 567570 (81i:12006)
  • [5] J. E. Olson, A combinatorial problem on finite abelian groups. II, J. Number Theory 1 (1969), 195-199. MR 0240200 (39:1552)
  • [6] G. Rabinovitch, Eindeutigkeit der zerlegung in primzahlfaktoren in quadratischen zahlkörpern, Proc. Fifth Internat. Congr. Math., vol. I, 1912, pp. 418-421=J. Reine Angew. Math. 142 (1913), 153-164.
  • [7] R. Sasaki, On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 37-39. MR 839802 (87i:11146)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R11, 11R29

Retrieve articles in all journals with MSC: 11R11, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1113641-X
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society