Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness and stability of nonnegative solutions for semipositone problems in a ball


Authors: Ismael Ali, Alfonso Castro and R. Shivaji
Journal: Proc. Amer. Math. Soc. 117 (1993), 775-782
MSC: Primary 35J65; Secondary 35B32, 35B35, 35P30
DOI: https://doi.org/10.1090/S0002-9939-1993-1116249-5
MathSciNet review: 1116249
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the uniqueness and stability of nonnegative solutions for classes of nonlinear elliptic Dirichlet problems on a ball, when the nonlinearity is monotone, negative at the origin, and either concave or convex.


References [Enhancements On Off] (What's this?)

  • [1] K. J. Brown, A. Castro, and R. Shivaji, Nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems, Differential Integral Equations 2 (1989), 541-545. MR 996760 (90f:35010)
  • [2] K. J. Brown and R. Shivaji, Instability of nonnegative solutions for a class of semipositone problems, Proc. Amer. Math. Soc. 112 (1991), 121-124. MR 1043405 (91h:35047)
  • [3] A. Castro, J. B. Garner, and R. Shivaji, Existence results for a class of sublinear semipositone problems, Result. Math. (to appear).
  • [4] A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edingburgh Sect. A 108 (1988), 291-302. MR 943804 (90m:34040)
  • [5] -, Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. Amer. Math. Soc. 106 (1989), 735-740. MR 949875 (89k:35015)
  • [6] -, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations 14 (1989), 1091-1100. MR 1017065 (90j:35084)
  • [7] B. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principles, Comm. Math. Phys. 68 (1979), 209-243. MR 544879 (80h:35043)
  • [8] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. MR 0299921 (45:8969)
  • [9] J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rational Mech. Anal. 98 (1987), 229-249. MR 867725 (88a:35101)
  • [10] G. Sweers, Semilinear elliptic eigenvalue problems, Doctoral Thesis, Univ. of Leiden, Netherlands, 1988.
  • [11] S. Unsurangsie, Existence of a solution for a wave equation and an elliptic Dirichlet problem, Doctoral Thesis, Univ. of North Texas, 1988.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J65, 35B32, 35B35, 35P30

Retrieve articles in all journals with MSC: 35J65, 35B32, 35B35, 35P30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1116249-5
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society