Uniqueness and stability of nonnegative solutions for semipositone problems in a ball

Authors:
Ismael Ali, Alfonso Castro and R. Shivaji

Journal:
Proc. Amer. Math. Soc. **117** (1993), 775-782

MSC:
Primary 35J65; Secondary 35B32, 35B35, 35P30

MathSciNet review:
1116249

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the uniqueness and stability of nonnegative solutions for classes of nonlinear elliptic Dirichlet problems on a ball, when the nonlinearity is monotone, negative at the origin, and either concave or convex.

**[1]**K. J. Brown, Alfonso Castro, and R. Shivaji,*Nonexistence of radially symmetric nonnegative solutions for a class of semi-positone problems*, Differential Integral Equations**2**(1989), no. 4, 541–545. MR**996760****[2]**K. J. Brown and R. Shivaji,*Instability of nonnegative solutions for a class of semipositone problems*, Proc. Amer. Math. Soc.**112**(1991), no. 1, 121–124. MR**1043405**, 10.1090/S0002-9939-1991-1043405-5**[3]**A. Castro, J. B. Garner, and R. Shivaji,*Existence results for a class of sublinear semipositone problems*, Result. Math. (to appear).**[4]**Alfonso Castro and R. Shivaji,*Nonnegative solutions for a class of nonpositone problems*, Proc. Roy. Soc. Edinburgh Sect. A**108**(1988), no. 3-4, 291–302. MR**943804**, 10.1017/S0308210500014670**[5]**Alfonso Castro and R. Shivaji,*Nonnegative solutions for a class of radially symmetric nonpositone problems*, Proc. Amer. Math. Soc.**106**(1989), no. 3, 735–740. MR**949875**, 10.1090/S0002-9939-1989-0949875-3**[6]**Alfonso Castro and R. Shivaji,*Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric*, Comm. Partial Differential Equations**14**(1989), no. 8-9, 1091–1100. MR**1017065**, 10.1080/03605308908820645**[7]**B. Gidas, Wei Ming Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879****[8]**D. H. Sattinger,*Monotone methods in nonlinear elliptic and parabolic boundary value problems*, Indiana Univ. Math. J.**21**(1971/72), 979–1000. MR**0299921****[9]**Joel Smoller and Arthur Wasserman,*Existence of positive solutions for semilinear elliptic equations in general domains*, Arch. Rational Mech. Anal.**98**(1987), no. 3, 229–249. MR**867725**, 10.1007/BF00251173**[10]**G. Sweers,*Semilinear elliptic eigenvalue problems*, Doctoral Thesis, Univ. of Leiden, Netherlands, 1988.**[11]**S. Unsurangsie,*Existence of a solution for a wave equation and an elliptic Dirichlet problem*, Doctoral Thesis, Univ. of North Texas, 1988.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J65,
35B32,
35B35,
35P30

Retrieve articles in all journals with MSC: 35J65, 35B32, 35B35, 35P30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1993-1116249-5

Article copyright:
© Copyright 1993
American Mathematical Society