Uniqueness and stability of nonnegative solutions for semipositone problems in a ball

Authors:
Ismael Ali, Alfonso Castro and R. Shivaji

Journal:
Proc. Amer. Math. Soc. **117** (1993), 775-782

MSC:
Primary 35J65; Secondary 35B32, 35B35, 35P30

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116249-5

MathSciNet review:
1116249

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the uniqueness and stability of nonnegative solutions for classes of nonlinear elliptic Dirichlet problems on a ball, when the nonlinearity is monotone, negative at the origin, and either concave or convex.

**[1]**K. J. Brown, A. Castro, and R. Shivaji,*Nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems*, Differential Integral Equations**2**(1989), 541-545. MR**996760 (90f:35010)****[2]**K. J. Brown and R. Shivaji,*Instability of nonnegative solutions for a class of semipositone problems*, Proc. Amer. Math. Soc.**112**(1991), 121-124. MR**1043405 (91h:35047)****[3]**A. Castro, J. B. Garner, and R. Shivaji,*Existence results for a class of sublinear semipositone problems*, Result. Math. (to appear).**[4]**A. Castro and R. Shivaji,*Nonnegative solutions for a class of nonpositone problems*, Proc. Roy. Soc. Edingburgh Sect. A**108**(1988), 291-302. MR**943804 (90m:34040)****[5]**-,*Nonnegative solutions for a class of radially symmetric nonpositone problems*, Proc. Amer. Math. Soc.**106**(1989), 735-740. MR**949875 (89k:35015)****[6]**-,*Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric*, Comm. Partial Differential Equations**14**(1989), 1091-1100. MR**1017065 (90j:35084)****[7]**B. Gidas, W. Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principles*, Comm. Math. Phys.**68**(1979), 209-243. MR**544879 (80h:35043)****[8]**D. H. Sattinger,*Monotone methods in nonlinear elliptic and parabolic boundary value problems*, Indiana Univ. Math. J.**21**(1972), 979-1000. MR**0299921 (45:8969)****[9]**J. Smoller and A. Wasserman,*Existence of positive solutions for semilinear elliptic equations in general domains*, Arch. Rational Mech. Anal.**98**(1987), 229-249. MR**867725 (88a:35101)****[10]**G. Sweers,*Semilinear elliptic eigenvalue problems*, Doctoral Thesis, Univ. of Leiden, Netherlands, 1988.**[11]**S. Unsurangsie,*Existence of a solution for a wave equation and an elliptic Dirichlet problem*, Doctoral Thesis, Univ. of North Texas, 1988.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J65,
35B32,
35B35,
35P30

Retrieve articles in all journals with MSC: 35J65, 35B32, 35B35, 35P30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116249-5

Article copyright:
© Copyright 1993
American Mathematical Society