Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ 6$-torsion and hyperbolic volume


Authors: F. W. Gehring and G. J. Martin
Journal: Proc. Amer. Math. Soc. 117 (1993), 727-735
MSC: Primary 30F40; Secondary 20H10, 57S30
DOI: https://doi.org/10.1090/S0002-9939-1993-1116260-4
MathSciNet review: 1116260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Kleinian group $ \operatorname{PGL} (2,\,{O_3})$ is shown to have minimal covolume $ ( \approx 0.0846 \ldots )$ among all Kleinian groups containing torsion of order $ 6$ (the associated hyperbolic orbifold is also the minimal volume cusped orbifold). This follows from: Any cocompact Kleinian group with torsion of order $ 6$ has covolume at least $ \tfrac{1} {9}$. As a consequence, any compact hyperbolic manifold with a symmetry of order $ 6$ (with fixed points) has volume at least $ \tfrac{4} {3}$. These results follow from new collaring theorems for torsion in a Kleinian group arising from our generalizations of the Shimizu-Leutbecher inequality.


References [Enhancements On Off] (What's this?)

  • [1] C. Adams, The noncompact hyperbolic $ 3$-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), 601-606. MR 894423 (88m:57018)
  • [2] A. Beardon, The geometry of Kleinian groups, Springer-Verlag, 1983. MR 698777 (85d:22026)
  • [3] F. W. Gehring and G. J. Martin, Stability and rigidity in Jorgensen's inequality, Complex Variables 12 (1989), 277-282. MR 1040927 (91h:30067)
  • [4] -, Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math. 418 (1991), 31-76. MR 1111201 (92j:20047)
  • [5] -, Discreteness in Kleinian groups and iteration theory (to appear).
  • [6] -, Commutators, collars and the geometry of Möbius groups (to appear).
  • [7] -, Volume and torsion in hyperbolic $ 3$-folds (to appear).
  • [8] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), 739-749. MR 0427627 (55:658)
  • [9] S. Kojima and Y. Miyamoto, The smallest hyperbolic $ 3$-manifold with totally geodesic boundary (to appear).
  • [10] B. Maskit, Kleinian groups, Springer-Verlag, 1988. MR 959135 (90a:30132)
  • [11] -, Some special $ 2$-generator Kleinian groups, Proc. Amer. Math. Soc. 106 (1989), 175-186. MR 937850 (89i:20073)
  • [12] R. Meyerhoff, A lower bound for the volume of hyperbolic $ 3$-manifolds, Canad. J. Math. 39 (1987), 1038-1056. MR 918586 (88k:57049)
  • [13] -, The cusped hyperbolic $ 3$-orbifold of minimal volume, Bull. Amer. Math. Soc. 13 (1985), 154-156. MR 799800 (87b:22022)
  • [14] -, Sphere packing and volume in hyperbolic space, Comment. Math. Helv. 61 (1986), 271-278. MR 856090 (88e:52023)
  • [15] W. P. Thurston, The geometry and topology of $ 3$-manifolds, Princeton Univ. Lecture notes, 1980.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30F40, 20H10, 57S30

Retrieve articles in all journals with MSC: 30F40, 20H10, 57S30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1116260-4
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society