Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of abelian groups


Author: L. Brailovsky
Journal: Proc. Amer. Math. Soc. 117 (1993), 627-629
MSC: Primary 20A05; Secondary 20K99
DOI: https://doi.org/10.1090/S0002-9939-1993-1129873-0
MathSciNet review: 1129873
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group and let $ k > 2$ be an integer such that $ ({k^3} - k) < \vert G\vert/2$ if $ G$ is finite. Suppose that the condition $ \vert{A^2}\vert \leqslant k(k + 1)/2$ is satisfied by every $ k$-element subset $ A \subseteq G$. Then $ G$ is abelian.


References [Enhancements On Off] (What's this?)

  • [BFP] Ja. G. Berkovich, G. A. Freiman, and Cheryl E. Praeger, Small squaring and cubing properties for finite groups, Bull. Austral. Math. Soc. 44 (1991), 429-450. MR 1138020 (93b:20045)
  • [Fr] G. A. Freiman, On two- and three-element subsets of groups, Aequationes Math. 22 (1981), 140-152. MR 645414 (83e:20029)
  • [HLM] M. Herzog, P. Longobardi, and M. Maj, On a combinatorial problem in group theory (to appear). MR 1239053 (94h:20032)
  • [LM] P. Longobardi and M. Maj, The classification of groups with the small squaring property on $ 3$-sets (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20A05, 20K99

Retrieve articles in all journals with MSC: 20A05, 20K99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1129873-0
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society