POSITIVE HARMONIC MAJORIZATION OF THE REAL PART OF A HOLOMORPHIC FUNCTION

STEPHEN J. GARDINER

(Communicated by Clifford J. Earle, Jr.)

Abstract. Let U be the unit disc. This paper investigates which domains D in the complex plane have the property that $\Re f$ belongs to h^1, or the more restrictive property that e^f belongs to the Smirnov class N^+, for every holomorphic function $f: U \to D$.

1. Introduction

For each domain (i.e., connected open set) D in \mathbb{C}, let $\mathcal{H}(U, D)$ be the class of all holomorphic functions from the open unit disc U into D. As usual, let N be the Nevanlinna class of all holomorphic functions f on U for which

$$\sup_{0 < r < 1} \int_0^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta < \infty.$$

Each function f in N has a nontangential limit, denoted by $f(e^{i\theta})$, at almost every boundary point $e^{i\theta}$. The Smirnov class N^+ is the subclass of functions f in N for which

$$\int_0^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta \to \int_0^{2\pi} \log^+ \left| f(e^{i\theta}) \right| d\theta \quad (r \to 1-).$$

A discussion of the classes N and N^+ can be found in Garnett [5, Chapter II].

Theorem A below is classical; see Helms [6, Theorem 8.33] for the “if” assertion and Frostman [4, §52] or Nevanlinna [8, VII, §4.2] for the converse. Theorem B was established more recently by Ahern and Cohn [1]. For an introduction to the notion of thin sets the reader is referred to [6, Chapter 10].

Theorem A. Let D be a domain in \mathbb{C}. Then $f \in N$ for every f in $\mathcal{H}(U, D)$ if and only if ∂D has positive logarithmic capacity.

Theorem B. Let D be a domain in \mathbb{C}. Then $f \in N^+$ for every f in $\mathcal{H}(U, D)$ if and only if $\mathbb{C} \setminus D$ is nonthin at ∞.

In this paper we investigate which domains D have the property that $e^f \in N$, or that $e^f \in N^+$, for every f in $\mathcal{H}(U, D)$. We note that $e^f \in N$ if

Received by the editors June 30, 1991; presented to the Society, March 21, 1992 in Springfield, Missouri.

1991 Mathematics Subject Classification. Primary 30D50; Secondary 31A15.
and only if the real part of \(f \) can be written as the difference of two positive harmonic functions on \(U \), i.e., \(\Re f \in h^1 \). Further (assuming that \(e^f \in \mathcal{N}^+ \)), \(e^f \in \mathcal{N}^+ \) if and only if \(\Re f \) is majorized in \(U \) by the Poisson integral of its nontangential boundary values.

We will denote the right half-plane by \(D_0 \). It is obviously the case that if \(D \subseteq D_0 \) then \(\Re f \in h^1 \) for every \(f \) in \(\mathcal{H}(U, D) \). The following result describes the situation for simply connected domains that contain \(D_0 \).

Theorem 1. Let \(D \) be a simply connected domain that contains \(D_0 \). Then \(\Re f \in h^1 \) for every \(f \) in \(\mathcal{H}(U, D) \) if and only if
\[
\int_{-\infty}^{\infty} \frac{\text{dist}(iy, \partial D)}{1 + y^2} \, dy < \infty.
\]

As will be seen in §2, Theorem 1 follows easily from a known result on the angular derivative problem. Now suppose that \(D \) is a simply connected domain that contains \(D_0 \) and satisfies (1). If \(D_1 \) is a domain (not necessarily simply connected) contained in \(D \), then clearly \(\Re f \in h^1 \) (or, equivalently, \(e^f \in \mathcal{N}^+ \)) for every \(f \) in \(\mathcal{H}(U, D_1) \). The following result identifies which of these domains have the stronger property that \(e^f \in \mathcal{N}^+ \) for every \(f \in \mathcal{H}(U, D_1) \).

Theorem 2. Let \(D \) be a simply connected domain that contains \(D_0 \) and satisfies (1), and let \(D_1 \) be a domain contained in \(D \). Then \(e^f \in \mathcal{N}^+ \) for every \(f \) in \(\mathcal{H}(U, D_1) \) if and only if \(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \), where
\[
D_1^* = \{(x_1, \ldots, x_4) \in \mathbb{R}^4 : (x_1^2 + x_2^2 + x_3^2)^{1/2} + ix_4 \in D_1\}.
\]

Here \(\infty \) denotes the Alexandroff point for \(\mathbb{R}^4 \). The condition "\(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \)" is equivalent to "\(D_0 \setminus D_1 \) is not minimally thin at \(\infty \) with respect to \(D_0 \)"; but the proof of Theorem 2 (see §3) does not use any results concerning minimally thin sets.

Let \(\Pi[g] \) denote the Poisson integral in \(U \) of a function \(g \) in \(L^1(\partial U) \). The following is a simple consequence of Theorem 2.

Corollary. Let \(D_1 \) be a domain contained in \(D_0 \). Then \(u = \Pi[u|_{\partial U}] \) for every \(f = u + iv \) in \(\mathcal{H}(U, D_1) \) if and only if \(\mathbb{R}^4 \setminus D_1^* \) is nonthin at \(\infty \).

2. Proof of Theorem 1

2.1. The following result is due to Oikawa [9], who formulated it in terms of an infinite strip rather than a half-plane. A closely related result had previously been given by Rodin and Warschawski [10, Theorem 2].

Theorem C. Let \(D \) be a simply connected domain that contains \(D_0 \). Then (1) holds if and only if there is a one-to-one conformal map \(g \) of \(D \) onto \(D_0 \) such that \(g(z)/z \) has a finite nonzero limit as \(|z| \to \infty \) in \(\{re^{i\theta} : |\theta| < \theta_0\} \) for each \(\theta_0 \) in \((0, \pi/2) \).

The "if" part of Theorem 1 follows easily. To see this, let \(D \) be as in the statement of Theorem 1 and suppose (1) holds. Then there is a function \(g \) as in Theorem C. Let \(z = x + iy \), and put \(l = \lim_{x \to \infty} g(x)/x \). Clearly \(l \) is real, so \(l \in (0, \infty) \). Thus \(\text{Reg} \) is a positive harmonic function on \(D \) whose Poisson integral representation in \(D_0 \) includes the term \(lx \). Hence \(\text{Reg} \) majorizes \(lx \) on \(D_0 \). It follows that if \(f \in \mathcal{H}(U, D) \) the function \(l^{-1}\text{Reg} \circ f \) is a positive harmonic majorant of \(\Re f \), and this implies that \(\Re f \in h^1 \).
2.2. Conversely, suppose that D is a simply connected domain that contains D_0 and that $\Re f \in h^1$ for every f in $H(U, D)$. It is certainly not the case that $\Re f \in h^1$ for every holomorphic function on U (see below), so $D \neq \mathbb{C}$. Thus we can choose f to be a one-to-one conformal mapping of U onto D. Let $f = u + iv$. By hypothesis, u has a positive harmonic majorant, h say, on U. Since $h \circ f^{-1}(z) \geq u \circ f^{-1}(z) = x$, the positive harmonic function $H = h \circ f^{-1}$ majorizes x on D. We define $\phi: \mathbb{R} \to [0, \infty)$ by $\phi(y) = \text{dist}(iy, \partial D)$. If $\phi(y) > 0$ then D contains the open disc of centre iy and radius $\phi(y)$. Thus, applying Harnack’s inequalities, we obtain $H(iy) \geq CH(\phi(y)/2 + iy) \geq C\phi(y)/2$, where C is a positive constant. Since $\int_{\{\phi(y) > 0}\} H(iy)/(1 + y^2)\,dy < \infty$, it is now clear that (1) holds.

3. Proof of Theorem 2

3.1. We recall some definitions. A positive harmonic function is called quasi-bounded if it can be expressed as the limit of an increasing sequence of bounded positive harmonic functions. Let W be an open subset of \mathbb{R}^n ($n \geq 2$), let s be a positive superharmonic function on W, and let $A \subseteq W$. Then the reduced function (or réduite) of s relative to A in W is defined to be the infimum of all positive superharmonic functions S on W that satisfy $S \geq s$ on A. A subset A of \mathbb{R}^n ($n \geq 3$) is said to be thin at ∞ if the reduced function of (the constant function) 1 relative to A in \mathbb{R}^n is less than 1 at some point of \mathbb{R}^n. The following lemma is an immediate consequence of Huber [7, Lemma].

Lemma A. Let $A \subseteq D_0$. The following are equivalent:

(i) the reduced function of $z \mapsto x$ relative to A in D_0 equals x;

(ii) the set $A^* = \{(x_1, \ldots, x_d) : (x_1^2 + x_2^2 + x_3^2)^{1/2} + i x_4 \in A\}$ is nonthin at ∞.

3.2. Now let D be as in the statement of Theorem 2. It follows (see §2.1) that the subharmonic function x^+ has a harmonic majorant in D. Let h denote the least harmonic majorant of x^+ in D. Suppose that $\mathbb{R}^4 \setminus D_1^*$ (and hence also $(D_0 \setminus D_1)^*$) is nonthin at ∞. It follows from Lemma A that if s is any positive superharmonic function on D that majorizes h on $D \setminus D_1$ so that $s(z) \geq x$ on $D_0 \setminus D_1$, then $s(z) \geq x$ on D_0. Hence s is a superharmonic majorant of x^+ on D, and so $s \geq h$ on D. Thus the reduced function of h relative to the set $D \setminus D_1$ in D equals h itself, and so (see Doob [3, I.VIII.10])

$$h(z) = \int_{D \cap \partial D_1} h(w) \, d\mu_{z, D_1}(w) = \lim_{m \to \infty} h_m(z) \quad (z \in D_1)$$

where

$$h_m(z) = \int_{D \cap \partial D_1} \min\{h(w), m\} \, d\mu_{z, D_1}(w) \quad (z \in D_1)$$

and $d\mu_{z, D_1}$ denotes harmonic measure for D_1 and z. Since h is a positive harmonic function on D_1 that majorizes x there, it follows that if $f \in H(U \setminus D_1)$ then $h \circ f$ is a positive harmonic function on U that majorizes the real part of f. Further, if we define $u_m = h_m \circ f + \Re f - h \circ f$, then each harmonic function u_m is bounded above and so is majorized on U by the Poisson integral of its (nontangential) boundary values. It follows, on letting
$m \to \infty$, that $\Re f$ is majorized in U by the Poisson integral of its boundary values. Thus $e^f \in N^+$ for every f in $H(U, D_1)$.

3.3. To prove the converse, let $f = u + iv$, where $f: U \to D_1$ is the covering map (see Ahlfors [2, Chapter 10]). If D_1 is bounded, the result is trivial. If D_1 is unbounded then

$$\int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} g(f(e^{i\theta})) \frac{d\theta}{2\pi} = \int_{\partial D_1} g \, d\mu_{f(w), D_1} \quad (w \in U)$$

for any continuous function g on $\overline{D_1} \cup \{\infty\}$. If we put $g(z) = \min\{x^+, m/|z|\}$ in (2) and let m tend to infinity, it follows that

$$u^+(w) \leq \int_0^{2\pi} \frac{1 - |w|^2}{|e^{i\theta} - w|^2} u^+(e^{i\theta}) \frac{d\theta}{2\pi} = \int_{\partial D_1} x^+ \, d\mu_{f(w), D_1} (z) \quad (w \in U)$$

in view of the hypothesis that $e^f \in N^+$. Since $f(U) = D_1$, we have

$$(\Re w)^+ \leq \int_{\partial D_1} x^+ \, d\mu_{w, D_1} (z) \quad (w \in D_1).$$

It follows that x^+ has a quasi-bounded harmonic majorant on D_1 and hence on $D_1 \cap D_0$. Thus x is a quasi-bounded harmonic function on $D_1 \cap D_0$, and so

$$\Re w = \int_{D_0 \cap \partial D_1} x \, d\mu_{w, D_1 \cap D_0} (z) \quad (w \in D_1 \cap D_0).$$

Hence the reduced function of x relative to $D_0 \setminus D_1$ in D_0 equals x itself. It follows from Lemma A that $\mathbb{R}^4 \setminus D_1^*$ is nonthin at ∞, and this completes the proof of Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE, DUBLIN 4, IRELAND