Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Distortion of sets by inner functions

Author: D. H. Hamilton
Journal: Proc. Amer. Math. Soc. 117 (1993), 771-774
MSC: Primary 30A10; Secondary 30D50
MathSciNet review: 1139469
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any inner function $ f$ with $ f(0) = 0$ and any Borel set $ E \subset {\mathbf{D}}$

$\displaystyle {M_\alpha }(z \in {\mathbf{D}}:f(z) \in E) \geqslant {M_\alpha }(E),\qquad 0 < \alpha \leqslant 1,$

where $ {M_\alpha }$ denotes $ \alpha $-dimensional Hausdorff measure. In the case that $ 0 < {M_\alpha }(E) < \infty $ we have equality only for rotations of the identity.

References [Enhancements On Off] (What's this?)

  • [1] C. Belna, W. Cohn, G. Piranian, and K. Stephenson, Level sets of special infinite products, Michigan Math. J. 29 (1982), 79-81. MR 646373 (83h:30033)
  • [2] J. Fernandez and D. Pestana, Distortion of boundary sets under inner functions and applications (to appear). MR 1183352 (93k:30014)
  • [3] D. H. Hamilton, Conformal distortion of boundary sets, Trans. Amer. Math. Soc. 308 (1988), 69-81. MR 946430 (90h:30020)
  • [4] P. W. Jones, Bounded holomorphic functions with all level sets of infinite length, Michigan Math. J. 27 (1980), 197-208. MR 555839 (81b:30066)
  • [5] G. Piranian and A. Weitsman, Level sets of infinite length, Comment. Math. Helv. 53 (1978), 166-164. MR 490872 (81j:30029)
  • [6] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 0114894 (22:5712)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A10, 30D50

Retrieve articles in all journals with MSC: 30A10, 30D50

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society