Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Distortion of sets by inner functions

Author: D. H. Hamilton
Journal: Proc. Amer. Math. Soc. 117 (1993), 771-774
MSC: Primary 30A10; Secondary 30D50
MathSciNet review: 1139469
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any inner function $ f$ with $ f(0) = 0$ and any Borel set $ E \subset {\mathbf{D}}$

$\displaystyle {M_\alpha }(z \in {\mathbf{D}}:f(z) \in E) \geqslant {M_\alpha }(E),\qquad 0 < \alpha \leqslant 1,$

where $ {M_\alpha }$ denotes $ \alpha $-dimensional Hausdorff measure. In the case that $ 0 < {M_\alpha }(E) < \infty $ we have equality only for rotations of the identity.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A10, 30D50

Retrieve articles in all journals with MSC: 30A10, 30D50

Additional Information

PII: S 0002-9939(1993)1139469-2
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia