INTEGER-VALUED POLYNOMIALS ON A SUBSET

PAUL-JEAN CAHEN

Communicated by Louis J. Ratliff, Jr.

Abstract. We let D be a local (noetherian) one-dimensional unibranched domain, K its quotient field, m its maximal ideal, D' its integral closure, and m' the maximal ideal of D'. If E is a subset of K, we let $\text{Int}(E, D)$ be the set of integer-valued polynomials on E, thus $\text{Int}(E, D) = \{f \in K[X] | f(E) \subseteq D\}$. For a fractional subset E of D (i.e., there is a nonzero element d of D such that $dE \subseteq D$), we show that the prime ideals of $\text{Int}(E, D)$ above m are in one-to-one correspondence with the elements of the topological closure of E in the completion of K for the m'-adic topology.

Introduction

Throughout this paper, D is a domain; we denote by K its quotient field and by D' the integral closure of D. If E is a subset of K, we let $\text{Int}(E, D)$ be the set of integer-valued polynomials on E, thus $\text{Int}(E, D) = \{f \in K[X] | f(E) \subseteq D\}$; it is clearly a ring containing D, throughout, we assume that E is nonempty and D is not a field, hence that $\text{Int}(E, D)$ is strictly contained in $K[X]$ (as indeed $\text{Int}(E, D) \cap K = D$). If E is D itself, we simply write $\text{Int}(D)$ for $\text{Int}(D, D)$.

The very classical case is that of The Ring of integer-valued polynomials, i.e., $\text{Int}(\mathbb{Z})$, or even $\text{Int}(D)$ where D is the ring of integers of a number field [22, 23] and, even more generally, where D is Dedekind [5]; by localization, D turns into a discrete rank-one valuation domain and the prime ideals of $\text{Int}(D)$ above the maximal ideal m of D are then known to be in one-to-one correspondence with the elements of the completion \hat{D} of D: to any element α of \hat{D} corresponds the prime $\mathfrak{m}_\alpha = \{f \in \text{Int}(D) | f(\alpha) \in \hat{m}\}$ [12, 4, 13], considering the m-adic topology, this result generalizes to the case where D is noetherian, local, one-dimensional, with finite residue field, and is analytically irreducible (that is where \hat{D} is a domain) [11]. Dropping this last hypothesis, however, only two facts were known in the previous decade:

Received by the editors March 26, 1991 and, in revised form, July 17, 1991; presented at Integer-valued Polynomials Encounter, December 12, 1990, Centre International de Rencontres Mathématiques, Marseille.

1991 Mathematics Subject Classification. Primary 13B25; Secondary 11S05, 12J10, 13E05, 13G05.

The author wishes to thank the referee for several useful comments and suggestions.

©1993 American Mathematical Society

0002-9939/93 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(1) The prime of $\text{Int}(D)$ above m are of the type $\mathfrak{m}_\alpha = \{ f \in \text{Int}(D) | f(\alpha) \in \widehat{m} \}$ [13].

(2) If D is not analytically irreducible, then some of those primes are equal; namely, if $(\alpha - \beta)$ is a zero divisor in \widehat{D}, then $\mathfrak{m}_\alpha = \mathfrak{m}_\beta$ [14].

Letting D be noetherian, one-dimensional, and local, we say that D is unibranched if, moreover, D' is local (hence a discrete rank-one valuation domain); recall that D is analytically irreducible if and only if it is unibranched and D' is a finite D-module [3, 21]. Very recently it has been shown that if D is not unibranched (first in the case where D' is a finite D-module [9] and then without this hypothesis [19]), there are only finitely many primes above m (namely, $\mathfrak{m}_\alpha = \mathfrak{m}_\beta$ if $(\alpha - \beta)$ lies in some nontrivial ideal of D); hence the unibranched (and nonanalytically irreducible) case was the only one to remain open. So, letting D be a unibranched domain (with finite residue field), we determine here entirely the spectrum of $\text{Int}(E, D)$ for any fractional subset E of D (i.e., such that $\mathfrak{m}E \subset D$ for a nonzero element d of D), recovering the spectrum of $\text{Int}(D)$ (i.e., $E = D$) as well as the classical results on a discrete rank-one valuation domain (i.e., $D = D'$) as special cases.

In the first section we state some generalities on integer-valued polynomials on a subset, mostly on Krull dimension and localization. In §2, generalizing a result of Gilmer, Heinzer, and Lantz [19], we show that if D is noetherian, one-dimensional, local, with finite residue field, then, for any fractional subset E of D, $\text{Int}(E, D')$ is the integral closure of $\text{Int}(E, D)$ and that if, moreover, D is unibranched then $\text{Int}(E, D')$ is a radical extension of $\text{Int}(E, D)$ (i.e., every element of $\text{Int}(E, D')$ has a power in $\text{Int}(E, D)$). In §3 we first determine the spectrum of $\text{Int}(E, D)$ for a fractional subset E of a discrete rank-one valuation domain and then of a unibranched domain D (whose integral closure D' is a discrete rank-one valuation domain) as follows: Letting \mathfrak{m}' be the maximal ideal of D', we consider the \mathfrak{m}'-adic topology, hence the topology defined by the valuation of D', rather than the m-adic topology, treating D as a subset of D'; we can thus deduce the spectrum of $\text{Int}(D)$ from that of $\text{Int}(D, D')$ and more generally establish that for any fractional subset E of D the primes of $\text{Int}(E, D)$ above m are in one-to-one correspondence with the elements of the topological closure of E in the completion of K for the topology defined by the valuation of D'. Lastly we discuss the noetherian property of $\text{Int}(E, D)$, generalizing and shedding some light on the results of [19] obtained in the particular case of $\text{Int}(D)$.

1. Krull dimension and localization

We start with some elementary inclusions.

Proposition 1.1. If D and B are two domains of quotient field K such that $D \subset B$ and E, F two subsets of K and such that $E \subset F$, then $\text{Int}(F, D) \subset \text{Int}(E, B)$.

If E is not contained in D then the polynomial X is not in $\text{Int}(E, D)$, thus:

Proposition 1.2. Let D be a domain and E a subset of K. Then the following statements are equivalent:

(i) $E \subset D$.
(ii) \(\text{Int}(D) \subset \text{Int}(E, D) \).
(iii) \(D[X] \subset \text{Int}(E, D) \).

It is easy to describe some primes of \(\text{Int}(E, D) \): If \(\alpha \in E \) and \(p \) is a prime ideal of \(D \), we note \(\mathfrak{P}(\alpha, p) = \{ f \in \text{Int}(E, D) | f(\alpha) \in p \} \) the set of polynomials of \(\text{Int}(E, D) \) taking on the value of \(\alpha \) in \(p \); this set is clearly a prime ideal of \(\text{Int}(E, D) \) above \(p \) and the quotient \(\text{Int}(E, D)/\mathfrak{P}(\alpha, p) \) is isomorphic to \(D/p \); in particular, if \(m \) is a maximal ideal of \(D \) then \(\mathfrak{M}_\alpha = \mathfrak{P}(\alpha, m) \) is a maximal ideal of \(\text{Int}(E, D) \). If \(p \subseteq q \) then \(\mathfrak{P}(\alpha, p) \subseteq \mathfrak{P}(\alpha, q) \), and we can generalize here to \(\text{Int}(E, D) \) the results known for the Krull dimension of \(\text{Int}(D) \) [5, 13] (we denote by \(\dim R \) the Krull dimension of a ring \(R \)).

First note that if \(E \) is too large it may happen that every polynomial in \(\text{Int}(E, D) \) is constant (i.e., \(\text{Int}(E, D) = D \)). Also, following McQuillan [20], we shall say that \(E \) is a fractional subset of \(D \) if there exists a nonzero element \(d \) of \(D \) such that \(dE \subset D \).

Proposition 1.3. Let \(D \) be a domain and \(E \) a subset of \(K \). Then \(\dim \text{Int}(E, D) \geq \dim D \); if, moreover, \(E \) is a fractional subset of \(D \) then \(\dim \text{Int}(E, D) \geq \dim D + 1 \).

Proof. Let \((0) = p_0 \subset p_1 \subset \cdots \subset p_d \) be a chain of primes of \(D \); it gives rise to the chain of primes \(\mathfrak{P}(\alpha, p_0) \subset \mathfrak{P}(\alpha, p_1) \subset \cdots \subset \mathfrak{P}(\alpha, p_d) \) of \(\text{Int}(E, D) \). Moreover, if \(d \) is such that \(dE \subset D \) then \(d(X - \alpha) \in \mathfrak{P}(\alpha, p_0) \), hence \((0) \subseteq \mathfrak{P}(\alpha, p_0) \). \(\square \)

If \(R \) is a domain, recall that its valuative dimension \(\dim_v R \) is the supremum of the Krull dimensions of the overrings of \(R \) in the quotient field of \(R \); Also recall that a **Jaffard domain** is a domain such that \(\dim_v R = \dim R \); and lastly recall that a noetherian domain is a Jaffard domain [1].

Corollary 1.4. Let \(D \) be a domain and \(E \) a subset of \(K \). Then

(i) \(\dim \text{Int}(E, D) \leq \dim_v D + 1 \);
(ii) if \(D \) is a Jaffard domain then \(\dim \text{Int}(E, D) \leq \dim D + 1 \);
(iii) if \(D \) is a Jaffard domain and \(E \) a fractional subset of \(D \), then \(\dim \text{Int}(E, D) = \dim D + 1 \).

Proof. (i) \(\text{Int}(E, D) \) satisfies the inclusions \(D \subset \text{Int}(E, D) \subset K[X] \), and the result follows from [2, Lemma 1.1]; (ii) and (iii) are clear. \(\square \)

We conclude this section with localization properties:

Proposition 1.5. Let \(D \) be a domain, \(E \) a subset of \(K \), and \(S \) a multiplicative subset of \(D \). Then

(i) \(S^{-1} \text{Int}(E, D) \subset \text{Int}(E, S^{-1}D) \);
(ii) if \(E \) is a subset of \(D \) and \(D \) is noetherian, then \(S^{-1} \text{Int}(E, D) = \text{Int}(E, S^{-1}D) \);
(iii) if \(A = E \) is a subring of \(D \) and \(S \) is a multiplicative subset of \(A \), then \(S^{-1} \text{Int}(A, D) \subset \text{Int}(S^{-1}A, S^{-1}D) \). Moreover, if \(A \) or \(D \) is noetherian, then \(S^{-1} \text{Int}(A, D) = \text{Int}(S^{-1}A, S^{-1}D) = \text{Int}(A, S^{-1}D) \).

Proof. (i) Immediate.
(ii) Let \(f \in \text{Int}(E, S^{-1}D) \). The \(D \)-module generated by \(f(E) \) is (included in) a finite \(D \)-module (generated by the coefficients of \(f \)); hence there exists \(s \in S \) such that \(sf(E) \subset S^{-1}D \), thus \(f \in S^{-1}\text{Int}(E, D) \).

(iii) If \(f \in \text{Int}(A, D) \), \(f \) is by definition a polynomial with coefficients in \(K[X] \) whose homomorphic image in \((K/D)[X] \) is null on \(A \), then its image in \(S^{-1}(K/D)[X] \) is null on \(S^{-1}A \) [10, Proposition 4], thus \(\text{Int}(A, D) \subset \text{Int}(S^{-1}A, S^{-1}D) \) and the following inclusions always hold: \(S^{-1}\text{Int}(A, D) \subset \text{Int}(S^{-1}A, S^{-1}D) \subset \text{Int}(A, S^{-1}D) \). Moreover, if \(D \) is noetherian it follows from (ii) that \(\text{Int}(A, S^{-1}D) \subset S^{-1}\text{Int}(A, D) \); the same holds if \(A \) is noetherian, with the same proof, considering \(A \)-modules instead of \(D \)-modules. □

Remark 1.6. If \(E \) is simply a subset of \(K \) (and not of \(D \)), then \(f(E) \) is not necessarily included in the \(D \)-module generated by the coefficients of \(f \) and the conclusion of (ii) may fail. Indeed if, for instance, \(D = \mathbb{Z} \), \(S \) is any nontrivial multiplicative set, and \(E = S^{-1}\mathbb{Z} \), then \(\text{Int}(E, S^{-1}\mathbb{Z}) = S^{-1}\text{Int}(\mathbb{Z}) \) does contain nonconstant polynomials.

2. INTEGRAL CLOSURE

We start with a general condition for \(\text{Int}(E, D) \) to be integrally closed.

Proposition 2.1. Let \(D \) be a domain and \(E \) a subset of \(K \). Then \(\text{Int}(E, D) \) is integrally closed if and only if \(D \) is integrally closed.

Proof. • If \(D \) is not integrally closed there exists \(x \in K, x \notin D \), which is integral over \(D \), then \(x \notin \text{Int}(E, D) \) but \(x \) is integral over \(\text{Int}(E, D) \).

• If \(D \) is integrally closed, and if \(f \in K(X) \) is integral over \(\text{Int}(E, D) \), then \(f \in K(X) \) (since \(f \) is integral over \(K[X] \), which is integrally closed), and, for every \(x \in E \), \(f(x) \) is integral over \(D \); hence \(f(x) \in D \), thus \(f \in \text{Int}(E, D) \). □

In [19] it is proved that if \(D \) is a one-dimensional noetherian domain then the elements of \(\text{Int}(D') \) are integral over \(\text{Int}(D) \); this is done by assuming (without loss of generality) that \(D \) is local. Here we state a similar result for \(\text{Int}(E, D) \), but first we present the following

Lemma 2.2. Let \(D \) be a noetherian domain, \(E \) a fractional subset of \(D \), and \(f \in \text{Int}(E, D') \). Then \(f(E) \) is contained in a \(D \)-algebra \(R \), finitely generated as a \(D \)-module and such that \(D \subset R \subset D' \).

Proof. Let \(d \) be a nonzero element such that \(dE \subset D \), and let \(f = a_0/b + (a_1/b)X + \cdots + (a_n/b)X^n \), where \(a_0, a_1, \ldots, a_n \) and \(b \) are in \(D \). If \(x \in E \) it is clear that \(bd^n f(x) \in D \), hence \(f(E) \) is included in the \(D \)-module \(M = D' \cap (1/bd^n)D \). Since \(D \) is noetherian, \(M \) has finitely many generators \(x_1, \ldots, x_r \) and \(f(E) \) is included in the \(D \)-algebra \(R = D[x_1, \ldots, x_r] \), which is also a finitely generated \(D \)-module. □

Proposition 2.3. Let \(D \) be a one-dimensional noetherian local domain with finite residue field, and let \(E \) be a fractional subset of \(D \). Then \(\text{Int}(E, D') \) is the integral closure of \(\text{Int}(E, D) \).

Proof. Since \(\text{Int}(E, D') \) is integrally closed, it remains to prove that it is an integral extension of \(\text{Int}(E, D) \): let \(f \in \text{Int}(E, D') \), \(f(E) \) is contained in a
INTEGER-VALUED POLYNOMIALS ON A SUBSET

Let D be a noetherian domain and E a fractional subset of D. Then $\text{Int}(E, D')$ is almost integral over $\text{Int}(E, D)$.

Proof. Let $f \in \text{Int}(E, D')$, $f(E)$ is contained in a D-algebra R, finitely generated as a D-module such that $D \subset R \subset D'$. Then, for every integer n, $f^n(E) \subset R$, and hence, for d in the (nonzero) conductor $[D : R]$, $df^n \in \text{Int}(E, D)$. \(\square\)

Proposition 2.3 can be improved in the case where D is unibranched (generalizing a result implicitly contained in the proof of Theorem 3.1 of [19], with the same argument):

Proposition 2.6. Let D be a (one-dimensional noetherian local) unibranched domain with finite residue field, and let E be a fractional subset of D. Then $\text{Int}(E, D')$ is a radical extension of $\text{Int}(E, D)$: for any $f \in \text{Int}(E, D')$ there is an integer n such that $f^n \in \text{Int}(E, D)$.

Proof. As above, let $f \in \text{Int}(E, D')$, $f(E)$ is contained in a D-algebra R, finitely generated as a D-module such that $D \subset R \subset D'$. Since in this case D is unibranched then R is local, say with maximal ideal n and some power n^n of n is contained in the (nonzero) conductor $[D : R]$, if q is the cardinal of R/n then, for every $x \in R$, $x^{q-1} = \varepsilon + y$ (where ε is 0 or 1 and $y \in n$); if p is the characteristic of R/n, it follows from a basic property of binomial coefficients that $(x^{q-1})^p = \varepsilon + y$, where ε is 0 or 1 and $y \in n^2$; by induction, letting $n = (q - 1)p^{m-1}$, we have $x^n = \varepsilon + y$, where $y \in n^m$, hence $x^n \in D$, thus $f^n \in \text{Int}(E, D)$. \(\square\)

3. INTEGER-VALUED POLYNOMIALS OVER A UNIBRANCHED DOMAIN

If D is a local domain of maximal ideal m with finite residue field and E is a subset of its quotient field K, we let $\mathcal{J} = \{f \in \text{Int}(E, D)| f(E) \subset m\}$; \mathcal{J} is clearly an ideal of $\text{Int}(E, D)$. We first establish the following (generalizing [9]):

Lemma 3.1. Let D be a local domain with maximal ideal m and finite residue field, E a subset of K, and \mathfrak{M} a prime ideal of $\text{Int}(E, D)$ containing the ideal...
\(\mathcal{J} = \{ f \in \text{Int}(E, D) | f(E) \subseteq m \} \). Then \(\mathcal{M} \) is maximal, it is above \(m \), and its residue field is isomorphic to \(D/m \).

Proof. \(\mathcal{M} \) is clearly above \(m \), and if \(q \) denotes the cardinal of \(D/m \) then, for any \(f \) in \(\text{Int}(E, D) \), \((f^q - f) \in \mathcal{J} \); hence the residue field of \(\mathcal{M} \) is of cardinal \(q \). Therefore, it is isomorphic to \(D/m \) and \(\mathcal{M} \) is maximal. \(\square \)

Now if \(V \) is a discrete rank-one valuation domain with finite residue field we generalize to \(\text{Int}(E, V) \) the classical results on the spectrum of \(\text{Int}(V) \) [13]. In a first step we suppose \(E \) to be a subset contained in \(V \):

Lemma 3.2. Let \(E \) be a subset of a rank-one discrete valuation domain \(V \) with maximal ideal \(n \) and with finite residue field. Then the primes of \(\text{Int}(E, V) \) above \(n \) are in one-to-one correspondence with the elements of the topological closure \(\overline{E} \) of \(E \) in \(\hat{V} \): to any element \(\alpha \) of \(\overline{E} \) corresponds the prime \(\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, V) | f(\alpha) \in n \} \).

Proof. This is an easy repetition of the classical proof [13]. \(n \) is a principal ideal generated by an element \(\pi \), hence \(\mathcal{J} = \{ f \in \text{Int}(E, V) | f(E) \subseteq n \} = \pi \text{Int}(E, V) \). Now every integer-valued polynomial (on \(E \)) is a continuous function on the topological closure \(\overline{E} \) of \(E \) with values in the completion \(\hat{V} \) of \(V \), thus

\[
\text{Int}(V) \subseteq \text{Int}(E, V) \subseteq \mathcal{C}(\overline{E}, \hat{V}).
\]

The ideal \(\mathcal{J} \) is the intersection \(\text{Int}(E, V) \cap \mathcal{C}(\overline{E}, \hat{n}) \), thus

\[
\text{Int}(E, V)/\mathcal{J} \subseteq \mathcal{C}(\overline{E}, \hat{V})/\mathcal{C}(\overline{E}, \hat{n}) = \mathcal{C}(\overline{E}, k)
\]

(where \(\mathcal{C}(\overline{E}, k) \) is the ring of locally constant functions on \(\overline{E} \) with values in \(\hat{V}/\hat{n} = k \)). Since \(\overline{E} \) is compact (being a subspace of \(\hat{V} \)), the primes of \(\mathcal{C}(\overline{E}, k) \) are in one-to-one correspondence with the elements of \(\overline{E} \): to any element \(x \) corresponds the set of functions null at \(x \) [3, II, §4, exercise 17].

Every prime of \(\text{Int}(E, V) \) above \(n \) contains \(\pi \), hence it contains \(\mathcal{J} \) and, therefore, it is maximal (Lemma 2.1); hence every prime of \(\text{Int}(E, V)/\mathcal{J} \) lifts in \(\mathcal{C}(\overline{E}, k) \) (therefore, every prime of \(\text{Int}(E, V) \) lifts in \(\mathcal{C}(\overline{E}, \hat{V}) \)). In conclusion the primes of \(\text{Int}(E, V) \) containing \(n \) are of the type

\[
\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, V) | f(\alpha) \in \hat{n} \}, \quad \text{where} \quad \alpha \in \overline{E}.
\]

Lastly, if \(\alpha \neq \beta \), there is \(f \) in \(\text{Int}(V) \) such that \(f(\alpha) \in \hat{n} \) but \(f(\beta) \notin \hat{n} \) (because \(\text{Int}(V) \) is dense in \(\mathcal{C}(\hat{V}, \hat{V}) \) [11, 13]), hence \(\mathfrak{m}_\alpha \neq \mathfrak{m}_\beta \), since \(\text{Int}(V) \subseteq \text{Int}(E, V) \). \(\square \)

The previous lemma generalizes to a fractional subset:

Proposition 3.3. Let \(E \) be a fractional subset of a rank-one discrete valuation domain \(V \) with maximal ideal \(n \) and finite residue field. Then the primes of \(\text{Int}(E, V) \) above \(n \) are in one-to-one correspondence with the elements of the topological closure \(\overline{E} \) of \(E \) in the completion \(\hat{K} \) of the quotient field \(K \) of \(V \): to any element \(\alpha \) of \(\overline{E} \) corresponds the prime \(\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, V) | f(\alpha) \in \hat{n} \} \).

Proof. Since \(E \) is a fractional subset of \(V \), there exists an element \(d \) of \(V \) such that \(dE \subseteq V \); we let \(F = dE \) and \(\phi \) be the ring homomorphism such that \(\phi(f(X)) = f(X/d) \), \(\phi \) is clearly an isomorphism from \(\text{Int}(E, V) \) onto
Integer-valued Polynomials on a Subset

Int(F, V). Now F is a subset of V and from Lemma 3.2 the primes of Int(F, V) above n are in one-to-one correspondence with the elements of the topological closure \(\overline{F} \) of \(F \) in the completion \(\widehat{V} \) of \(V \) (contained in the completion \(\widehat{K} \) of \(K \)). If \(E \) is the topological closure of \(E \) in \(\widehat{K} \) then \(\overline{F} = dE \).

Let \(\alpha \) be an element of \(\overline{F} \), \(\beta = \alpha/d \), and \(\mathfrak{n}_\alpha = \{ f \in \text{Int}(F, V) | f(\alpha) \in \mathfrak{n} \} \). Then \(\phi^{-1}(\mathfrak{n}_\alpha) = \mathfrak{m}_\beta = \{ f \in \text{Int}(E, V) | f(\beta) \in \mathfrak{n} \} \).

We can generalize further to a unibranched domain:

Theorem 3.4. Let \(D \) be a (one-dimensional noetherian local) unibranched domain with maximal ideal \(\mathfrak{m} \) and finite residue field. Let \(\mathfrak{m}' \) be the maximal ideal of \(D' \) and \(E \) be a fractional subset of \(D \). The primes of Int(\(E \), \(D \)) above \(\mathfrak{m} \) are in one-to-one correspondence with the elements of the topological closure \(\overline{E} \) of \(E \) in the completion \(\widehat{K} \) of \(K \) for the topology defined by the valuation of \(D' \): to any element \(\alpha \) of \(\overline{E} \) corresponds the prime \(\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, D) | f(\alpha) \in \mathfrak{m}' \} \).

Proof. We consider the inclusion Int(\(E \), \(D \)) \(\subset \) Int(\(E \), \(D' \)). Since Int(\(E \), \(D' \)) is integral over Int(\(E \), \(D \)) (Proposition 2.3), every prime above \(\mathfrak{m} \) in Int(\(E \), \(D \)) lifts in a prime above \(\mathfrak{m}' \) in Int(\(E \), \(D' \)) and hence is of the type \(\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, D) | f(\alpha) \in \mathfrak{m}' \} \). Moreover, if \(\alpha \neq \beta \) there is \(f \in \text{Int}(E, D') \) such that \(f(\alpha) \in \mathfrak{m}' \) but \(f(\beta) \notin \mathfrak{m}' \) and there is an integer \(n \) such that \(f^n \in \text{Int}(E, D) \) (Proposition 2.6), thus \(f^n(\alpha) \in \mathfrak{m}' \) but \(f^n(\beta) \notin \mathfrak{m}' \); therefore, \(\mathfrak{m}_\alpha \neq \mathfrak{m}_\beta \).

Remarks 3.5. (i) If \(E \) is not a fractional subset of \(D' \) then Int(\(E \), \(D \)) = \(D \) since Int(\(E \), \(D \)) \(\subset \) Int(\(E \), \(D' \)) and Int(\(E \), \(D' \)) = \(D' \) [19, Lemma 2.0]. It remains to study the case where \(E \) is a fractional subset of \(D' \) but not of \(D \).

(ii) Theorem 3.4 does notably improve the first statement of Theorem 3.1 of [19] that says only that if \(D \) is unibranched (hence \(D' \) is the ring of a valuation \(v \)) and \(\alpha, \beta \) are distinct elements of \(D \), then \(\mathfrak{m}_\alpha \neq \mathfrak{m}_\beta \).

(iii) If \(D \) is analytically irreducible, the primes of Int(\(D \)) above the maximal ideal \(\mathfrak{m} \) of \(D \) are in one-to-one correspondence with the elements of the completion \(\widehat{D} \) of \(D \) for the \(\mathfrak{m} \)-adic topology [11]; this special case fits with the general result of Theorem 3.4 thanks to

Proposition 3.6. Let \(D \) be a (one-dimensional noetherian local) unibranched domain of maximal ideal \(\mathfrak{m} \) and \(\mathfrak{m}' \) the maximal ideal of \(D' \). The following statements are equivalent:

(i) the restriction on \(D \) of the \(\mathfrak{m}' \)-adic is the \(\mathfrak{m} \)-adic topology;

(ii) the \(\mathfrak{m} \)-adic completion \(\widehat{D} \) of \(D \) is included in the \(\mathfrak{m}' \)-adic completion \(\widehat{D}' \) of \(D' \);

(iii) \(D \) is analytically irreducible.

Proof. (i) \(\Rightarrow \) (ii) Clear.

(ii) \(\Rightarrow \) (iii) If the completion \(\widehat{D} \) of \(D \) is included in the completion \(\widehat{D}' \) of \(D' \) then \(\widehat{D} \) is a domain.

(iii) \(\Rightarrow \) (i) If \(D \) is analytically irreducible then \(D' \) is a finite \(D \)-module [3, 21], hence there is an integer \(n \) such that \(\mathfrak{m}^n \) is included in the (nonzero) conductor \([D : D'] \), hence \(\mathfrak{m}^n \) is an ideal of \(D \) included in \(\mathfrak{m} \) and, for every \(k \), \(\mathfrak{m}^{nk} \) is included in \(\mathfrak{m}^k \). On the other hand, there is an integer \(m \) such that \(\mathfrak{m}^m \) is included in \(\mathfrak{m}'' \) (since \(D \) is one-dimensional noetherian and local) and, for every \(k \), \(\mathfrak{m}^{mk} \) is included in \(\mathfrak{m}'^{mk} \). □
4. Noetherian property

We generalize to \(\text{Int}(E, D) \) the results on the noetherian property of \(\text{Int}(D) \) [19]; as in this particular case, an obvious necessary condition for \(\text{Int}(E, D) \) to be noetherian is for \(D \) itself to be noetherian (since \(D \) is the homomorphic image of \(\text{Int}(E, D) \) by the evaluation map at some element \(\alpha \) of \(E \)). We set first the case of a finite subset \(E \).

Lemma 4.1. Let \(D \) be a domain and \(E \) a finite subset of \(K \). Then \(\text{Int}(E, D) \) is not noetherian.

Proof. If \(E \) contains only one point \(\alpha \) then clearly \(\text{Int}(E, D) = D + (X - \alpha)K[X] \); it shares with \(K[X] \) the ideal \(I = (X - \alpha)K[X] \) and it is not noetherian since \(K = K[X]/I \) is not finitely generated (as a module) over \(D = \text{Int}(E, D)/I \) [9, Proposition 1]. If \(E \) contains the points \(\alpha_1, \ldots, \alpha_n \) then \(\text{Int}(E, D) \) shares with \(K[X] \) the ideal \(I = \varphi K[X] \), where \(\varphi = \prod_{i=1}^{n}(X - \alpha_i) \), and the same proof could apply (although it is less straightforward to show that \(K[X]/I \) is not finitely generated over \(\text{Int}(E, D)/I \)). We may also show directly that \(I \) is not a finitely generated ideal of \(\text{Int}(E, D) \): Assume by way of contradiction that \(I \) is generated by the polynomials \(f_1, \ldots, f_r \). Then any polynomial \(f \in I \) is such that \(f = \sum_{i=1}^{r} h_i f_i \), where \(h_i \in \text{Int}(E, D) \), for \(1 \leq i \leq r \). Writing \(f = \varphi g \) and \(f_i = \varphi g_i \) for \(1 \leq i \leq r \) and dividing by \(\varphi \), we have \(g = \sum_{i=1}^{r} h_i g_i \); therefore, \(g(\alpha_1) \) is in the \(D \)-module generated by \(g_1(\alpha_1), \ldots, g_r(\alpha_1) \). We reach a contradiction since \(g \) may be any polynomial of \(K[X] \). \(\square \)

The results of the previous lemma allow us also to conclude that for an infinite fractional subset \(E \) of a unibranched domain \(D \), some primes of \(\text{Int}(E, D) \) are not finitely generated.

Lemma 4.2. Let \(D \) be a (one-dimensional noetherian local) unibranched domain with finite residue field, \(E \) an infinite fractional subset of \(D \), \(m' \) the maximal ideal of \(D' \), and \(\bar{E} \) the topological closure of \(E \) in the completion \(K \) of \(K \) for the topology defined by the valuation of \(D' \). Then

(i) there exists a point of accumulation in \(\bar{E} \) for this topology;

(ii) if \(\alpha \) is a point of accumulation of \(\bar{E} \) for this topology, the prime \(\mathfrak{m}_\alpha = \{ f \in \text{Int}(E, D) | f(\alpha) \in m' \} \) of \(\text{Int}(E, D) \) is not finitely generated.

Proof. (i) Since \(E \) is fractional, it is a subset of the compact space \((1/d)\bar{D} \).

(ii) Assume by way of contradiction that \(\mathfrak{m}_\alpha \) is generated by the polynomials \(f_1, \ldots, f_r \). Then \(f_i(\alpha) \in m' \), for \(1 \leq i \leq r \); and if \(\beta \) is close enough to \(\alpha \) in \(\bar{E} \), \(f_i(\beta) \in m' \) for \(1 \leq i \leq r \). Hence the inclusion \(\mathfrak{m}_\alpha \subset \mathfrak{m}_\beta \), however, \(\mathfrak{m}_\alpha \) is maximal and distinct from \(\mathfrak{m}_\beta \) (Theorem 3.4). \(\square \)

We can now generalize to \(\text{Int}(E, D) \) [19, Theorem 2.3].

Theorem 4.3. Let \(D \) be a noetherian domain and \(E \) a fractional subset of \(D \). If \(\text{Int}(E, D) \) is noetherian then there is no height-one prime in \(D' \) with finite residue field.

Proof. Assume by way of contradiction that a maximal ideal \(m' \) of \(D' \) is height-one with finite residue field. We let \(m = m' \cap D \). There are only finitely many primes of \(D' \) above \(m \) (one of them being \(m' \)) [21, (33.10)], and there is
INTEGER-VALUED POLYNOMIALS ON A SUBSET

a ring R, finitely generated as a D-module, such that $D \subset R \subset D'$, and m' is the only prime of D' above $n = m' \cap R$ (R is obtained by adjoining to D an element which belongs to m' but to no other prime above m). Any element of the (nonzero) conductor $[D : R]$ is clearly in the conductor $[\text{Int}(E, D) : \text{Int}(E, R)]$, hence if $\text{Int}(E, D)$ is noetherian then $\text{Int}(E, R)$ is a finitely generated $\text{Int}(E, D)$-module and thus a noetherian domain; by localization, $\text{Int}(E, R_n) = (\text{Int}(E, R))_n$ (Proposition 1.5) is also noetherian. We may suppose E is infinite according to Lemma 4.1, and we reach a contradiction according to Lemma 4.2 since R_n is clearly a (one-dimensional noetherian local) unibranch domain with finite residue field.

Remarks 4.4. (i) If E is not a fractional subset of D' then $\text{Int}(E, D) = D$ [20, Lemma 2.0]. As above (Remark 3.5(i)), it remains to study the case where E is a fractional subset of D' but not of D.

(ii) If E is a finite subset of D then it is a fractional subset.

(iii) To finish the proof of Theorem 4.3 for a subset E of D (without using Lemma 4.2), we could alternatively say that the integral closure of $\text{Int}(E, R_n)$ is $\text{Int}(E, D_{m'})$ (Proposition 2.3) and that $\dim \text{Int}(E, R_n) = \dim \text{Int}(E, D_{m'}) = 2$ (Corollary 1.4). Therefore, if $\text{Int}(E, R_n)$ is noetherian then $\text{Int}(E, D_{m'})$ is a dimension 2 noetherian domain [21, (33.12)]. We would then reach again a contradiction since $\text{Int}(E, D_{m'})$ is also a Prüfer domain, indeed, it does contain the ring of integer-valued polynomials $\text{Int}(D_{m'})$ over a discrete rank-one valuation domain and such a ring is known to be a Prüfer domain [15].

A necessary condition for $\text{Int}(D)$ to be noetherian, as we shall see in Corollary 4.6, is to be included in $D'[X]$. We can characterize this inclusion as follows (and this is a sharper version of [19, Corollary 4.4] where condition (i) is only given as sufficient).

Theorem 4.5. Let D be a noetherian domain. The following statements are equivalent:

(i) every prime of height one in D' has infinite residue field;
(ii) $\text{Int}(D, D') = D'[X]$;
(iii) $\text{Int}(D) \subset D'[X]$;
(iv) $\text{Int}(D') = D'[X]$.

Proof. (i) \Rightarrow (ii) Let p' be a height-one prime of D' and $p = p' \cap D$. Then A/p is infinite. Indeed, either p is not maximal and there is nothing to add or it is maximal, but in this case, p' is also maximal in D' and D'/p' is a D/p-module of finite type [21, (33.10)]. Then if $f \in \text{Int}(D, D')$, Cramer's rule shows that $f \in D'_{p'}[X]$. Therefore, $f \in D'[X]$ since D' is Krull, and thus $D' = \bigcap \{D'_{p'} : p' \text{ is height-one}\}$.

(ii) \Rightarrow (iii) Clear from the inclusion $\text{Int}(D) \subset \text{Int}(D, D')$ (Proposition 1.1).

(iii) \Rightarrow (iv) Since D is noetherian, $\text{Int}(D, D')$ is integral over $\text{Int}(D)$ [19, Proposition 2.2], a fortiori its elements are integral over $D'[X]$ that is clearly integrally closed; therefore, $\text{Int}(D') \subset \text{Int}(D, D') \subset D'[X]$. The reverse inclusion is clear (Proposition 1.2).

(iv) \Rightarrow (i) Assume by way of contradiction that a maximal ideal m' of D' has height-one with finite residue field. Then $\text{Int}(D') = D'[X]$ implies, by localization, that $\text{Int}(D'_{m'}) = D'_{m'}[X]$ (Proposition 1.5); however, this last equality does not hold since $D'_{m'}$ is a discrete rank-one valuation ring. \(\square\)
Theorems 4.3 and 4.5 together lead immediately to

Corollary 4.6. If \(D \) is a domain such that \(\text{Int}(D) \) is noetherian then \(D \) is noetherian and \(\text{Int}(D) \subset D'[X] \).

Conversely, if \(\text{Int}(D) \subset D'[X] \), \(D \) is noetherian, and \(D' \) is a finitely generated \(D \)-module, then \(\text{Int}(D) \) is noetherian.

Acknowledgment

The author wishes to thank the referee for several useful comments and suggestions.

References

Service de Mathématiques–Case 322, Faculté des Sciences et Techniques de St-Jérôme, 13397 Marseille Cedex 13, France
E-mail address: CAHEN@FRMOP11(Bitnet)