Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Upper bound of $ \sum 1/(a\sb i\log a\sb i)$ for primitive sequences

Authors: Paul Erdős and Zhen Xiang Zhang
Journal: Proc. Amer. Math. Soc. 117 (1993), 891-895
MSC: Primary 11B05
MathSciNet review: 1116257
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence $ A = \{ {a_i}\} $ of positive integers $ {a_1} < {a_2} < \cdots $ is said to be primitive if no term of $ A$ divides any other. The senior author conjectures that, for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \leqslant n,a \in A} {\frac{1} {{a\,\log \,a}}} \l...\limits_{p \leqslant n} {\frac{1} {{p\,\log \,p}}} \quad {\text{for}}\;n > 1,$

where $ p$ is a variable prime. In our two previous papers we partially proved this conjecture. The main result of this paper is: for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \in A} {\frac{1} {{a\,\log \,a}} < 1.84.} $

We also give a necessary and sufficient condition for this conjecture, i.e.,

$\displaystyle \sum\limits_{b \in B} {\frac{1} {{b\,\log \,b}} \leqslant \sum {\frac{1} {{p\,\log \,p}}} } $

for any primitive sequence $ B$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11B05

Retrieve articles in all journals with MSC: 11B05

Additional Information

PII: S 0002-9939(1993)1116257-4
Keywords: Primitive sequences
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia