UPPER BOUND OF $\sum 1/(a_i \log a_i)$ FOR PRIMITIVE SEQUENCES

PAUL ERDŐS AND ZHENXIANG ZHANG

(Communicated by William W. Adams)

Abstract. A sequence $A = \{a_i\}$ of positive integers $a_1 < a_2 < \cdots$ is said to be primitive if no term of A divides any other. The senior author conjectures that, for any primitive sequence A,

$$\sum_{a \leq n, a \in A} \frac{1}{a \log a} \leq \sum_{p \leq n} \frac{1}{p \log p} \quad \text{for } n > 1,$$

where p is a variable prime. In our two previous papers we partially proved this conjecture. The main result of this paper is: for any primitive sequence A,

$$\sum_{a \in A} \frac{1}{a \log a} < 1.84.$$

We also give a necessary and sufficient condition for this conjecture, i.e.,

$$\sum_{b \in B} \frac{1}{b \log b} \leq \sum_{p \leq n} \frac{1}{p \log p}$$

for any primitive sequence B.

1. Introduction

A sequence $A = \{a_i\}$ of positive integers $a_1 < a_2 < \cdots$ is said to be primitive if no term of A divides another [3, 4]. We denote by p_m the mth prime and by p a variable prime. We define the degree of an integer a, denoted by $\Omega(a)$, to be the number of prime factors of a, counted with multiplicity. The degree of a primitive sequence A, denoted by $d^o(A)$, is defined as the maximum degree of its terms. We take $d^o(A) = 0$ if $A = \{1\}$ or \emptyset.

We define $f(A) = \sum_{a \in A} 1/(a \log a)$. We take $f(A) = 0$ if $d^o(A) = 0$. Erdős [1] (cf. [4]) proved that there exists an absolute constant C such that $f(A) < C$ for any primitive sequence, using the inequality

$$\sum_{a \in A} \frac{1}{a} \prod_{p \leq P(a)} \left(1 - \frac{1}{p}\right) \leq 1,$$

where $P(a)$ is the largest prime factor of a. It is significant to get a reasonable upper bound for $f(A)$. Using (1) we first got $f(A) < 2.886$; then Robin...
improved it to 2.77 (neither is published). It seems to us that we could not do better by only using (1).

Erdös [2] has asked if the inequality

\[\sum_{a \leq n, a \in A} \frac{1}{a \log a} \leq \sum_{p \leq n} \frac{1}{p \log p} \quad \text{for } n > 1 \]

is always true for any \(A \). Zhang [7] proved that if \(A \) is primitive with \(d^0(a) \leq 4 \) then (2) is true. For a given primitive sequence \(A \) and \(m \geq 1 \), let \(A_m = \{ a : a \in A, \text{ all prime factors of } a \text{ are } \geq p_m \} \) and \(A'_m = \{ a : a \in A_m, p_m \mid a \} \). Zhang [8] proved that (2) is true for any primitive sequence \(A \) with the property that each \(A_m \) is “homogeneous.” That is, for each \(m \), there is some integer \(s_m \) such that either \(A_m = \emptyset \) or \(\Omega(a) = s_m \) for all \(a \in A_m \).

In this paper we prove the following two theorems.

Theorem 1. \(f(A) < 1.84 \) for any primitive sequence \(A = \{ a_i \} \).

Theorem 2. The necessary and sufficient condition for (2) being true for any primitive sequence \(A \) is that \(f(B) \leq \sum 1/(p \log p) \) for any primitive sequence \(B \).

The basic idea for proving Theorem 1 is the same as that used in [7, 8]. That is, we consider the least prime factors of terms of \(A \). For a given primitive sequence \(A \) and \(m \geq 1 \), with \(A_m \) and \(A'_m \) already defined, let \(A''_m = \{ a/p_m : a \in A'_m \} \). Clearly all of them are primitive. We study upper bounds \(F_m \) of \(f(A_m) \). To find \(F_m \) we can suppose \(A_m \) is finite by Lemma 3. At first we find \(F_m \) for \(m \geq N + 1 \), where \(N = 10^5 \), by induction on \(d^0(A_m) \). It is based on the fact that

\[f(A_m) = \sum_{i \geq m} f(A'_i) \quad \text{and} \quad f(A'_i) \leq \frac{f(A''_i)}{p_i}. \]

Then we find \(F_m \) from \(F_{m+1} \) for \(m = N, N - 1, \ldots, 2, 1 \). It is based on the fact that

\[f(A_m) = f(A_{m+1}) + f(A'_m) \quad \text{and} \quad f(A'_m) \leq f(A''_m)/p_m. \]

At last

\[f(A) = f(A_1) \leq F_1 < 1.84. \]

2. Proofs of the theorems

We have three constants: \(N = 10^5 \), \(\alpha = 1.0072629 \), and \(k = 0.0072847 \). We need five lemmas.

Lemma 1. We have \(p_n \geq n(\log n + \log \log n - \alpha) \) for \(n \geq 2 \) [5].

Lemma 2. We have

\[\sum_{i \geq m} \frac{1}{p_i(\log i + \log \log i - k)} < \frac{1}{\log m + \log \log m - k} \]

for \(m \geq N + 1 \).

Proof. Put \(h(m) = \sum_{i \geq m} 1/(p_i(\log i + \log \log i - k)) \),
\[g(m) = 1/(\log m + \log \log m - k), \]

\[\sum_{i \geq m} \frac{1}{p_i(\log i + \log \log i - k)} < \frac{1}{\log m + \log \log m - k} \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
c = (1 + 1/\log N)/N,

\[H(y) = (y + \log y - \alpha)(y + \log y - k), \] and

\[G(y) = (y + \log y + c - k)^2. \]

Then by Lemma 1,

\[
h(m + 1) < \int_{m}^{\infty} \frac{dx}{x(\log x + \log \log x + \alpha)(\log x + \log \log x - k)} = \int_{\log m}^{\infty} \frac{dy}{H(y)},
\]

\[
g(m + 1) > \frac{1}{\log m + 1/m + \log(\log m + 1/m) - k}
\]

\[
> \frac{1}{\log m + \log \log m + (1 + 1/\log m)/m - k}
\]

\[
\geq \frac{1}{\log m + \log \log m + c - k}
\]

\[
= \int_{y = \log m}^{\infty} \frac{d(y + \log y + c - k)}{G(y)} = \int_{\log m}^{\infty} \frac{1 + 1/y}{G(y)} dy \text{ for } m \geq N.
\]

Since \(k - \alpha - 2c + 1 > 10^{-8} > 0 \),

\[
H(y)(1 + 1/y) - G(y) = (k - \alpha - 2c + 1)y + (k - \alpha - 2c + 2) \log y
\]

\[
+ (\log y - \alpha)(\log y - k)/y + ak - \alpha - k - (c - k)^2
\]

\[
> \log y + ak - \alpha - k - (c - k)^2 > 1.4 > 0
\]

for \(y \geq \log m \geq \log N \); thus \(h(m+1) < g(m+1) \) for \(m \geq N \), i.e., \(h(m) < g(m) \) for \(m \geq N + 1 \).

Lemma 3. If \(c \) is a constant such that \(f(S) \leq c \) for any finite subsequence \(S \) of a given primitive sequence \(A = \{a_i\} \), then \(f(A) \leq c \).

Proof. Put \(c_m = \sum_{1 \leq i \leq m} 1/(a_i \log a_i) \). Then \(c_m \leq c \) and \(c_m < c_{m+1} \) for \(m \geq 1 \); thus \(f(A) = \lim_{m \to \infty} c_m \leq c \).

Lemma 4. We have \(f(A_m) \leq 1/(\log m + \log \log m - k) \) for \(m \geq N + 1 \) for any given primitive sequence \(A = \{a_i\} \).

Proof. By Lemma 3, we suppose \(A_m \) is finite. Induction on \(d^0(A_m) \). If \(d^0(A_m) \leq 1 \), then

\[
f(A_m) \leq \sum_{i \geq m} \frac{1}{p_i \log p_i} < \sum_{i \geq m} \frac{1}{p_i(\log i + \log \log i - k)}
\]

\[
< \frac{1}{\log m + \log \log m - k}
\]

by Lemmas 1 and 2.

Now suppose \(d^0(A_m) = s > 1 \). Since \(A_m = \bigcup_{i \geq m} A'_i \) is disjoint, \(f(A_m) = \sum_{i \geq m} f(A'_i) \). If \(d^0(A'_i) \leq 1 \) then

\[
f(A'_i) \leq \frac{1}{p_i \log p_i} < \frac{1}{p_i(\log i + \log \log i - k)}.
\]
If $d^\circ(A'_i) > 1$ then

$$f(A'_i) < \frac{f(A''_i)}{p_i} < \frac{1}{p_i(\log i + \log \log i - k)}$$

since $d^\circ(A''_i) = d^\circ(A'_i) - 1 < s$. Thus by Lemma 2,

$$f(A_m) = \sum_{i \geq m} f(A'_i) \leq \sum_{i \geq m} \frac{1}{p_i(\log i + \log \log i - k)}$$

$$< \frac{1}{\log m + \log \log m - k}.$$

Lemma 5. If $f(A_{m+1}) \leq F_{m+1}$ for any primitive sequence A and

$$F_m = \max\{F_{m+1}/(1 - 1/p_m), F_{m+1} + 1/(p_m \log p_m)\},$$

then $f(A_m) \leq F_m$ for any primitive sequence A.

Proof. Since $A_m = A_{m+1} \cup A'_m$ is disjoint,

$$f(A_m) = f(A_{m+1}) + f(A'_m) \leq F_{m+1} + f(A'_m).$$

By Lemma 3, we can suppose A_m is finite. Induction on $d^\circ(A_m)$. If $d^\circ(A_m) < 1$ or $d^\circ(A'_m) < 1$ then

$$f(A'_m) < 1/(p_m \log p_m)$$

and

$$f(A_m) \leq F_{m+1} + 1/(p_m \log p_m) \leq F_m.$$

Now suppose $d^\circ(A_m) = s > 1$ and $d^\circ(A'_m) > 1$. Then $d^\circ(A''_m) < s$; and thus

$$f(A''_m) \leq F_m \quad \text{and} \quad f(A'_m) < f(A''_m)/p_m \leq F_m/p_m.$$

Therefore,

$$f(A_m) \leq F_{m+1} + f(A'_m) \leq F_{m+1} + F_m/p_m \leq F_m(1 - 1/p_m) + F_m/p_m = F_m.$$

Theorem 1. $f(A) < 1.84$ for any primitive sequence A.

Proof. Put $F_{N+1} = 1/\{\log(N+1) + \log \log(N+1) - k\}$. Then

$$f(A_{N+1}) \leq F_{N+1}$$

by Lemma 4. Let

$$F_m = \max\{F_{m+1}/(1 - 1/p_m), F_{m+1} + 1/(p_m \log p_m)\}.$$

Then

$$f(A_m) \leq F_m \quad \text{for } m = N, N - 1, \ldots, 2, 1$$

by Lemma 5. Thus $f(A) = f(A_1) \leq F_1 < 1.84$. This completes the proof.

Theorem 2. The necessary and sufficient condition for (2) to be true for any primitive sequence A is that $f(B) \leq \sum 1/(p \log p)$ for any primitive sequence B.

Proof. (Necessity) If there exists a primitive sequence B such that $f(B) > \sum 1/(p \log p)$, then there exists an integer n such that

$$\sum_{b \in B, b \leq n} \frac{1}{b \log b} > \sum \frac{1}{p \log p},$$
thus
\[
\sum_{b \in B, \ b \leq n} \frac{1}{b \log b} > \sum_{p \leq n} \frac{1}{p \log p};
\]
this contradicts (2).

(Sufficiency) Suppose there exists a primitive sequence \(A = \{a_i\} \) and an integer \(n \) such that
\[
\sum_{a \in A, \ a \leq n} \frac{1}{a \log a} > \sum_{p \leq n} \frac{1}{p \log p}.
\]
Let \(B = \{a : a \in A, \ a \leq n\} \cup \{p : p > n\} \). Then \(B \) is primitive and \(f(B) > \sum 1/(p \log p) \). This is a contradiction.

Remark. From Lemma 1 and the inequality
\[
p_n \leq n(\log n + \log \log n - 0.5) \quad \text{for } n > 20 \quad [6]
\]
we can get \(1.63 < \sum 1/(p \log p) < 1.64 \). From this fact and the above theorems we can see how far we are now from the complete proof of the conjecture.

REFERENCES

1. P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. (2) 10 (1935), 126–128.
2. ———, Seminar at the University of Limoges, 1988.
5. Guy Robin, Estimation de la fonction de Tchebychev \(\theta \) sur le \(k \)-ième nombre premier et grandes valeurs de la fonction \(\omega(n) \) nombre de diviseurs premiers de \(n \), Acta Arith. 52 (1983), 367–389.
7. Zhang Zhenxiang, On a conjecture of Erdös on the sum \(\sum_{p \leq n} 1/(p \log p) \), J. Number Theory 39 (1991), 14–17.

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY

DEPARTMENT OF MATHEMATICS, ANHUI NORMAL UNIVERSITY, 241000 WUHU, ANHUI, PEOPLE'S REPUBLIC OF CHINA