Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Upper bound of $ \sum 1/(a\sb i\log a\sb i)$ for primitive sequences

Authors: Paul Erdős and Zhen Xiang Zhang
Journal: Proc. Amer. Math. Soc. 117 (1993), 891-895
MSC: Primary 11B05
MathSciNet review: 1116257
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence $ A = \{ {a_i}\} $ of positive integers $ {a_1} < {a_2} < \cdots $ is said to be primitive if no term of $ A$ divides any other. The senior author conjectures that, for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \leqslant n,a \in A} {\frac{1} {{a\,\log \,a}}} \l...\limits_{p \leqslant n} {\frac{1} {{p\,\log \,p}}} \quad {\text{for}}\;n > 1,$

where $ p$ is a variable prime. In our two previous papers we partially proved this conjecture. The main result of this paper is: for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \in A} {\frac{1} {{a\,\log \,a}} < 1.84.} $

We also give a necessary and sufficient condition for this conjecture, i.e.,

$\displaystyle \sum\limits_{b \in B} {\frac{1} {{b\,\log \,b}} \leqslant \sum {\frac{1} {{p\,\log \,p}}} } $

for any primitive sequence $ B$.

References [Enhancements On Off] (What's this?)

  • [1] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. (2) 10 (1935), 126-128.
  • [2] -, Seminar at the University of Limoges, 1988.
  • [3] P. Erdös, A. Sarközi, and E. Szemerédi, On divisibility properties of sequences of integers, Colloq. Math. Soc. Janos Bolyai, vol. 2, Debrecen, Hungary, 1968.
  • [4] H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
  • [5] Guy Robin, Estimation de la fonction de Tchebychef 𝜃 sur le 𝑘-ième nombre premier et grandes valeurs de la fonction 𝜔(𝑛) nombre de diviseurs premiers de 𝑛, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719,
  • [6] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
  • [7] Zhen Xiang Zhang, On a conjecture of Erdős on the sum ∑_{𝑝≤𝑛}1/(𝑝log𝑝), J. Number Theory 39 (1991), no. 1, 14–17. MR 1123165,
  • [8] -, On a problem of Erdös concerning primitive sequences, submitted.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11B05

Retrieve articles in all journals with MSC: 11B05

Additional Information

Keywords: Primitive sequences
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society