Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Upper bound of $ \sum 1/(a\sb i\log a\sb i)$ for primitive sequences


Authors: Paul Erdős and Zhen Xiang Zhang
Journal: Proc. Amer. Math. Soc. 117 (1993), 891-895
MSC: Primary 11B05
DOI: https://doi.org/10.1090/S0002-9939-1993-1116257-4
MathSciNet review: 1116257
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence $ A = \{ {a_i}\} $ of positive integers $ {a_1} < {a_2} < \cdots $ is said to be primitive if no term of $ A$ divides any other. The senior author conjectures that, for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \leqslant n,a \in A} {\frac{1} {{a\,\log \,a}}} \l... ...um\limits_{p \leqslant n} {\frac{1} {{p\,\log \,p}}} \quad {\text{for}}\;n > 1,$

where $ p$ is a variable prime. In our two previous papers we partially proved this conjecture. The main result of this paper is: for any primitive sequence $ A$,

$\displaystyle \sum\limits_{a \in A} {\frac{1} {{a\,\log \,a}} < 1.84.} $

We also give a necessary and sufficient condition for this conjecture, i.e.,

$\displaystyle \sum\limits_{b \in B} {\frac{1} {{b\,\log \,b}} \leqslant \sum {\frac{1} {{p\,\log \,p}}} } $

for any primitive sequence $ B$.

References [Enhancements On Off] (What's this?)

  • [1] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. (2) 10 (1935), 126-128.
  • [2] -, Seminar at the University of Limoges, 1988.
  • [3] P. Erdös, A. Sarközi, and E. Szemerédi, On divisibility properties of sequences of integers, Colloq. Math. Soc. Janos Bolyai, vol. 2, Debrecen, Hungary, 1968.
  • [4] H. Halberstam and K. F. Roth, Sequences, Chapter V, Oxford Univ. Press, 1966. MR 0210679 (35:1565)
  • [5] Guy Robin, Estimation de la fonction de Tchebychef $ \theta $ sur le $ k$-ième nombre premier et grandes valeurs de la fonction $ \omega (n)$ nombre de diviseurs premiers de $ n$, Acta Arith. 52 (1983), 367-389. MR 736719 (85j:11109)
  • [6] J. Barkley Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25:1139)
  • [7] Zhang Zhenxiang, On a conjecture of Erdös on the sum $ \sum\nolimits_{p \leqslant n} {1/(p\,\log \,p)} $, J. Number Theory 39 (1991), 14-17. MR 1123165 (92f:11131)
  • [8] -, On a problem of Erdös concerning primitive sequences, submitted.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11B05

Retrieve articles in all journals with MSC: 11B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1116257-4
Keywords: Primitive sequences
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society