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DEFINABLE OPERATIONS ON SETS
AND ELIMINATION OF IMAGINARIES

JAN HOLLY

(Communicated by Andreas R. Blass)

Abstract. This paper gives a new and constructive proof of Poizat's theorem

that the theory of algebraically closed fields admits elimination of imaginaries.

The proof uses ideas of definability for properties and operations on definable

sets. In addition, the property of being finite in an algebrically closed field,

as well as the property of having a given algebraic dimension are shown to be

definable properties.

1. Introduction

Equivalence relations and their quotient spaces have long interested mathe-

maticians. Taking a logical approach to this study, Poizat in [Pol] introduces

elimination of imaginaries with which a theory has in some sense, nice defin-

able quotient spaces. In particular, the theory of algebraically closed fields has

this property, and we present a new proof of this fact, in which the functions

involved are constructed explicitly and uniformly. The tools developed here

should also be useful for attacking similar problems.

To explain the ideas more formally, we begin with some terminology. For a

model s/ = (A, ...) of an L-theory T, an LA-definable set is a set definable

with parameters, that is, in the language Ll){a}aeA . Throughout the following,

formulas will have parameters from the universe listed explicitly. For example,

if cj>(a, x) is an L^-formula with a = (ax, ... , am) e Am and variables x -

(x\, ... , x„), then cj>(f, x) with variables t and x is an L-formula. We write

tj>(3, A") for the set {b e A" : sf (= cb(a, b)}, and 2(An) for the collection

of all LA-definable subsets of A".
Throughout this paper, K is used to denote an arbitrary model of the theory

of algebraically closed fields (ACF). The language of ACF is {0,1, +,-,•},
and the axioms are those for fields, plus those stating that every nonconstant

polynomial has a root.

1.1. Definition. An L-theory T with at least two constant symbols admits

elimination of imaginaries if for every sf \= T and n e Z+, for each defin-

able (without parameters) equivalence relation ~ on A" , there is a definable
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function f:An—*Ap (some p) such that

a ~ b # f(a) = f{b)      (a, be A").

The terminology comes from the fact that equivalence classes are sometimes

called imaginaries. One way for a theory to have elimination of imaginaries is

for each definable equivalence relation to have a definable set of representatives.

That is, there is a definable set containing exactly one element from each equiv-

alence class. In this case, there is a function /: A" —> A" giving elimination of

imaginaries.
Two examples of theories that eliminate imaginaries in this way are arith-

metic, as noted by Poizat in [Pol], and the theory of real closed fields, as shown

by Van den Dries in [vdDl].
One theory without definable sets of representatives for definable equivalence

relations is the theory of algebraically closed fields. There is no way, for exam-

ple, in a field of characteristic zero to definably choose a square root of two,

since there is an automorphism interchanging the two square roots. However,

Poizat showed in [Pol] that ACF does admit elimination of imaginaries. His

proof uses an equivalent, more abstract definition of elimination of imaginaries,

and shows that for every K (= ACF, for each Lk-definable set S c K" , there

is a set C c K such that any automorphism of K preserves S iff it fixes C

pointwise.
Presented here is a proof that gives explicitly the desired function / for each

definable equivalence relation in ACF; in fact, the construction of the formula

for / is independent of the particular field K f= ACF. The same method, given

an Lk -definable set S, produces explicitly a finite set C as described above.

For algebraically closed fields of characteristic zero, the definable closure of C

is the smallest field of definition for S.
The construction uses the ideas of definable properties and operations on

sets, which we define in the next section.

2. Definable properties and operations

2.1. Definition. Let T be an L-theory and 9s be a property of L^-definable

sets S c A" (fixed n), for models sf of T. We call 3s a definable property if

there is an L(i?)-sentence a(R) with new n-ary relation symbol R such that

for every sf \=T and every set S e 3S(An),

S has property 3s ■&■ (sf , S) \= o(R).

In other words, o(R) says, "The set represented by R has property 3s ."

As suggestive notation when discussing sets S c A" , the new «-ary relation

symbol S is sometimes used. (No confusion should arise.)

2.2. Examples. (1) The property of having exactly two elements is definable in

every theory (with equality). (2) In the theory of real closed fields, the property

of containing an open interval (■& being infinite) is definable.

A somewhat more surprising example is the following:

2.3. Proposition. In ACF, the property ofbeing a finite subset of K isdefinable.

Proof. Using the strong minimality of ACF (every set S e 3(K) is either

finite or cofinite), the following holds for sets S e 2(K):

.Sis finite <*S + S^K.



definable operations and elimination OF IMAGINARIES 1151

The property US + S ^ K" can be expressed easily by an L(5')-sentence.   □

2.4. Key Facts. For a definable property 9° in an L-theory T:

(1) Given an L-formula <j>(x, y) (x = (xx, ... , xm), y = (yx, ... , y„)),

there is an L-formula y/(x) such that for each sf \= T and a e Am ,

The set cb(a, A") has property 9° <=> sf |= y/(a).

(2) Let <j)(x) be a formula in an expansion L' of L, but still defining an

L^-definable subset <j)(A") of A" . Then there is an L'-sentence expressing,

"The set cj)(An) has property 9° ."

The next result is not used in the remaining sections, but is of independent

interest.

2.5. Theorem. In ACF, the property 9snd for Lie-definable sets S c Kn, of

having dimension d is definable.

Proof. For sets S e 3)(K), dim(S) = -oo iff S = 0, dim(S) = 0 iff S is
finite and nonempty, and dim(iS) =1 iff S is cofinite. Each of these properties

is definable since finiteness is a definable property.

Next, let n > 1 and use induction. Say <S e 3>(Kn), and consider the

projection n: S —> Kn~x on the first n - 1 coordinates. Dimension can be

defined inductively (see [vdD2]) as follows:

dim(S') = max{dim(/?0), dim(fii) + 1}

where B0 = {x e nS : dim(^~'(x)) = 0} and Bx — {x e nS : dim(n~x(x))

= !}■

The sets Bo and Bx are definable in the language L(S), since the properties

of having dimensions 0 and 1 in K are definable by the inductive hypothesis.

Then using the inductive hypothesis on BQ and Bx in Kn~x, we can express

in the language L(S) that the set S has dimension d by

\J        dim(Bo) = b & dim(Bx) = c.   D
max{6 ,c+\}=d

Next we consider operations sending LA -definable sets to LA -definable sets

in models sf of an L-theory T.

2.6. Definition. Let T be an L-theory. Fix positive integers n and p, and

suppose that /? is an operation with /J^ :3l(An) -^3(AP) for every sf \=T.

Then B is a definable operation if there is an L(7X*)-formula o(R,y) with new

n-ary relation symbol R and y = (yx, ... , yp), such that if sf \= T and
S e 3f(An), then

B(S) = {aeAp:(sf,S)\= o(R, a)}.

The formula o(R, y) is said to define ft in T.
Since a definable operation is always an operation in every model of T,

we abbreviate "For all sf \= T, r3\^:3f(A") -» 3{A*)? by "£: 3f(An) -»
3(Ap) ."

2.7. Notation. Let   a(R,y)   be an   L-formula defining an operation   /?:
3f(An) —» 3(AP) in a theory T, and let 4>(x) be a formula in an expansion

L' of L, but with the set (p(An) still being LA-definable. Then replacing R( )
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with <j)( ) everywhere in a, we obtain an L'-formula, denoted o(4>(An), y),

which defines the set P(cj)(An)).

We may also write o(y/(v , A"), y) if a formula y/(v , x) defines a family of

subsets of A" , parameterized by variables v = (vx, ... ,vq) (some q). Then

for fixed a e Aq , the formula o(ip(a, A"), y) defines the set fi(y/(a, A")) as

long as the set y/(a, A") is LA-definable.

2.8.   Proposition. Let T be an L-theory with models sf .

(1) If Bx: 3(A") -» 3(AP) and p2: 3(AP) -* 3(A«) are definable opera-
tions, then the composition fi2° Bx: 3(An) —► 3(Aq) is a definable operation.

(2) If f: A" —> Ap is a definable function (given in all models sf by an

L-formula independent of sf ), then the operation /? with fi(S) = f(S) for all
S e 3(An) is a definable operation.

(3) Given a definable equivalence relation on A" (given in all models sf by an

L-formula independent of sf ) and a definable operation /?: 3(A") —> 3(AP)
that sends each equivalence class to a one-element set, write

fi(eq. class of x) = {es} c Ap,     for j( e A".

Then the function f: A" -* Ap defined by f(x) = e^ is a definable function.

The proofs of these facts are straightforward.

3. Elimination of imaginaries

To prove that ACF admits elimination of imaginaries, we show that equiva-

lence classes can be mapped to finite sets, which can then be mapped to single-

element sets.

3.1. Lemma. There is a definable operation /?„ sending each nonempty La-

definable set S c K" (K an algebraically closed field) to a nonempty finite

subset of itself.

Proof. By induction on n . For n = 1, the L^-definable sets are the finite sets

and the cofinite sets. Proposition 2.3 allows us to define an operation fix by an

L(5')-formula o(S, y) saying

"S is finite and y e S, or

S is not finite and y e S n ({x : x2 e S} U {x : x3 e S} U {1})"

where S denotes the complement of S.

For finite S, this defines S itself. If S is infinite, then S is finite. The
set, Q, of square and cube roots of elements in S will have a finite nonempty

intersection with S unless S = K or S = K \ {0}. In any case, the set

S n (Q U {1}) is a finite nonempty subset of 5.

Note: If only the characteristic zero case is under consideration, the simpler

formula "ye S n ((S + 1) U {1})" can be used for o(S, y).

For n > 1 , define fi„ by considering the projection n: S —> K"~x of a

set S e 3(Kn) to the first n - 1 coordinates. By the inductive hypothesis,

a nonempty finite subset {bx, ... , bk} of n(S) is chosen by /?„_i . Then for

each i = I, ... , k , project the fiber tt"1^,) to the last coordinate, and use flx
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to choose a finite subset {ciX,... , c,m(,)}. So the set

k

\J{(bi,ax),...,(bl,cim{l))}cK"
1=1

is a nonempty finite subset of S.

Formally, for i — 1, ... , n- 1, let cjj(Sj, yj) define the operation /?,. Then

considering sets S„ e 3(K"),

(xx,... ,x„-i, z) e r3n(Sn) ^ x e fin-\{n(Sn)) & z e px({y : (x, y) e Sn})

& on-X(3ySn(K"-x ,y),x)& ax(Sn(x, K), z).

Let an(Sn,x,z) be this L(S„)-formula.   D

3.2. Lemma. For fixed n and k, there is a definable operation sending distinct

k-element sets {ax, ... , ak} c Kn to distinct one-element sets in Kp (fixed p ).

Proof. This is related to Lemma 5 in [Pol].

Case n = 1. To a A;-element set {ax, ... , ak} c K, associate the vector

(bx, ... , bk) e Kk of coefficients of the polynomial

(z - ax)(z -a2)---(z- ak) = zk + bxzk~x + ■■■ + bk_xz + bk.

So for n = 1, we have p = k. The formula a(S, y) defining the operation

says,

"There are exactly k members, ax, ... , ak, of S, and

£ k

yi=^2at&y2=   ^2 a'ai& ■ • ■ &yk = Y[ai
(=1 l<i<j<k i=i

Unique factorization in K[z] guarantees that distinct k-element sets map to

distinct sequences of coefficients. ("Sequence of coefficients" = "point in Kp ".)

Notice that the order of ax, ... , ak is unimportant, so the operation is well

defined.
Case n > 1. To each A:-element set

{(an, ... , aXn), ... , (akx, ... , ak„)} c K"

associate the vector, in some predetermined order, of coefficients of the poly-

nomial

(z — axxxx — ■ • ■ - ax„xn) ■ ■ ■ (z — akxxx — ■ ■ ■ — aknx„)

i0+...+i„=k

Just as in the n = 1 case, there is an L(5')-formula defining this operation,

and the operation is well defined, mapping distinct finite sets to distinct se-

quences.   □

Using the usual tricks to pad vectors of length < q to get vectors of length

q, we obtain:
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3.3. Corollary. For fixed n and k, there is an integer q and a definable oper-

ation ank sending distinct finite sets of j <k elements {ax, ... , dj} c Kn to

distinct one-element sets in Kq .

3.4. Lemma. Let formula cj>(x, y), with "parameters" x, define a family

{(j)(a, K") : a e Km} of subsets of K" , and let Bn be the operation described

in Lemma 3.1. Then there is an integer k such that #(/3'„(^(5, K"))) < k for
every a e Km .

Proof. By induction on n . For n = 1 , the operation f}x sends finite sets to

themselves and cofinite sets S to sets of cardinality < 5(#(5*)) + 1. The strong
minimality of ACF implies there is an integer r such that for all a e Km ,

4>(a, K) finite => #(<j)(a, K)) < r,

cj>(a, K) cofinite => #(^<j)(a, K)) < r,

so let k = 5r + 1 .
For n > 1, the set fin(4>(d, K")) is the union over all (bx, ... , bn-X) e

fi„-x(3yncj)(d, K"-X,yn)) of the sets fix(<f)(d,bx, ... , bn-\, K)). Let integer
5 be a cardinality bound from the inductive hypothesis applied to the formula

3y„cj>(x, yx, ... , y„-X, y„) with parameters x, and let r be such a bound for

the formula <j>(x, yx, ... , yn-\, yn) with all x, yx, ... , yn-\ considered as

the parameters. Then by the definition of /?„, the integer k = r • s is a bound

on #(Bn(cf)(a,Kn))).   □

3.5. Corollary. Given a definable equivalence relation on Kn , there is an integer

k such that each equivalence class E has #(/?„(£■)) < k, where /?„ is the

operation described in Lemma 3.1.

3.6. Theorem. ACF admits elimination of imaginaries (Poizat's Theorem).

Moreover, in an algebraically closed field K, from a formula 6(x, y) defining an
equivalence relation ~ on K" , one can construct a formula defining a function

f: Kn —> Kq (some q) such that a ~ b ■& f(a) = f(b). In fact, the formula

defining fi is independent of the particular field K.

Proof. Given the definable equivalence relation ~ on K" defined by 6 , let /?„

be the operation in Lemma 3.1 and let k be a bound (independent of K) on the

size of the images under /?„ of the equivalence classes. Then letting a„k be the

operation of Corollary 3.3, the composition anyk° Pn'- 3(Kn) —* 3(Kq) sends

each equivalence class to a distinct one-element set in Kq. Using Proposition

2.8(3), there is a function /: K" —> Kq such that a„ k o /3„(eq. class of x) =

{f(x)} for all x e K" . So f(a) = f(b) iff a and b are in the same equivalence

class.
Since all the functions and operations mentioned are actually constructed in

the proofs of the previous results, this gives a formula for /.   □

4. Constructions

Construction of representatives for points in projective space. The function /

in Theorem 3.6 gives actual points in Kq "representing" the classes of an equiv-

alence relation, so one might ask how the function / behaves when forming a

particular quotient space. One example of a widely used quotient space is P" ,

the projective space over a field, say the field of complex numbers.
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Question. How are the points of P" represented in some Cq by the function

/?

Answer. First remember that the space P" is (C"+1\{0})/~ where the equiv-

alence relation ~ is given by

(xQ, ... , x„) ~ (y0, ... , y„) & 3/1 ̂  0   (x0, ... ,x„) = (&y0, ... , kyn).

Use (xq : Xi : ■ • ■: xn) to denote the equivalence class of (xx, ... , x„), and for

the moment include the point 0 e C"+l as having its own equivalence class.

Consider the case n = 1 . Each class is sent to a nonempty finite subset of

itself by the operation fi2 of Lemma 3.1 as follows:

To begin, project to the first coordinate to get a subset of C. Considering

first the classes (x0 : xx) with xn / 0, this always gives the set C \ {0}. Apply

/Ji to get /?i(C \ {0}) = {1}. Then in the fiber above {1}, each class has a

single point (1, f1), so B2 sends such a class to the finite subset consisting of

that single point.

Next consider the equivalence class E — (0 : xx) with xx \t 0. The projection

to the first coordinate gives {0} c C, and fix sends this to itself. The fiber

above {0} is the entire equivalence class E, so projecting now to the second

coordinate gives C \ {0} , which fix sends to {1}. This means that B2 chooses

{(0, 1)} as the finite subset of E. The final equivalence class, (0:0), clearly

maps to itself under the operation fi2.

Normally at this stage, the map a„yk is needed in order to send finite sets to

single-element sets, but in this case the sets already consist of a single point each.

We can stop here and obtain the function / from the operation fi2 above. In

summary, points in P1 are represented by points in C2 as follows:

for xo 9^0,       (xo:xx)*-*(l,xx/xo);

forx, /0,        (0:jci)>-> (0, 1).

Noticing that this is the usual way to canonically represent points in projective

space, we ask whether the same thing happens for P" with n > 1 . It is not
hard to see that the process works just as well, giving representatives in C"+1 ,

for x0 / 0,        (x0 : X! :•••: x„) ^ (1,—,—,..., — ) ;
V       Xo     Xo Xo/

forx,#0,        (0:jc, :•••:*„) ~ fo, l,^2,...,^-) ■
V xx xx j

(0:---:0:x„)h-(0,...,0, 1).

A final remark on this example: the points chosen by /3n+x to represent the

elements of projective space are actually members of their respective equivalence

classes. Of course, we cannot expect this to happen for all definable equivalence
relations.

Construction of the smallest field of definition of a set. Poizat's presentation

in [Pol] shows that if an L-theory T admits elimination of imaginaries, then

for every L^-definable set S c A" (sf (= T), there is an L^-formula cj)(c, x)

with parameters cx, ... ,cm  defining S, such that for no other tuple d of
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parameters does cp(d, x) define S. (In fact, this is an equivalent definition of

elimination of imaginaries.) Let C = {c\, ... ,cm}. Then an automorphism

6 of sf fixes the set S iff 8 fixes C pointwise. In addition, the definable

closure, F , of C is the smallest definably closed set of definition of S. (F is

unique in this sense.)

In ACF, when considering a set S e 3(K") where K has characteristic

zero, this set F is the smallest field of definition of S. That is, S can be

defined by a formula that uses parameters only from F, and F is the smallest

subfield of K for which this is true. Using Theorem 3.6, we can construct this

subfield for a set S e 3(Kn) as follows.
Given an L^-formula ¥(5, x) defining S, define an equivalence relation

~ on Km by 6(v , w) := Vx(y/(v, x) <-> y/(w, x)). With the function / in

Theorem 3.6 (here, f:Km -^ K«),

/(3) = f(b) &a~b

o ip(a, x) and y/(b, x) define the same set.

Letting c = f(a) e Kq , the formula

cj)(c, x) := 3v (f(v) = c&y/(v, x))

defines S, and for no other tuple d does cj>(d, x) define S. The definable

closure of {cx, ... , cq} is then the smallest field of definition of S.

Remark. In such a construction, quantifier elimination is used in analyzing de-

finable sets. A constructive proof of the quantifier elimination can be found in

[KK].

5. Strongly minimal structures

Notice that Lemma 3.1 is actually stronger than necessary. It gives a single

definable operation that sends every nonempty L^-definable set S c K" to

a finite subset. It would be sufficient to have for each definable equivalence

relation an operation sending the equivalence classes to finite subsets.

Since the equivalence classes of a definable equivalence relation form a uni-

formly definable family of sets (obtained by substituting different parameters

into a fixed formula), such a result can be generalized, as was pointed out by

Anand Pillay in conversation.

5.1. Proposition. Let sf be strongly minimal with the algebraic closure of 0

(acl(0)) being infinite. Given a uniformly definable family &~ of sets S c A"
(some n), there is a definable operation fi that sends each nonempty set S eSF

to a nonempty finite subset of itself.

Proof. By induction on n .

For n = 1, by strong minimality there is an integer k such that

S e 9" finite => #(S) < k,

S e9 cofinite => #(5) < k,

so the property of being a finite member of F is a definable property, as is

that of being a cofinite member of 9. Since acl(0) is infinite, there is a

finite definable set C with #(C) > k. Let B{S) = S for finite S e 9, and
B(S) = SnC for cofinite Se9.
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For n > 1, the operation is defined by considering projections and using

induction, as in the proof of Lemma 3.1. One must also check that the projec-

tions and other sets involved belong to uniformly definable families in order to

use the inductive hypothesis. The details are left to the reader.   □

Also notice in Lemma 3.1 that for an L^-definable set S, the finite subset

constructed is contained in every algebraically closed set over which S is de-

finable. A theory T is said to have weak elimination of imaginaries if every

LA-definable set 5 c A" (sf \= T) has a smallest algebraically closed set of
definition (cf. [Po2, p. 422]). In fact, elimination of imaginaries automatically

gives weak elimination of imaginaries.

For strongly minimal theories in which every algebraically closed set is a

model (acl(0) being infinite implies this), the existence of smallest algebraically

closed sets of definition follows from Remark 2.4 in [Pi]. Namely, take an alge-

braically closed set of definition of smallest dimension. Note that this argument

shows the existence of such a set, but does not give an actual construction. For

ACF, the method of Lemma 3.1 allows one to construct these sets.
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