Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Plane Frobenius sandwiches of degree $ p$

Author: D. Daigle
Journal: Proc. Amer. Math. Soc. 117 (1993), 885-889
MSC: Primary 13A35; Secondary 13F20, 14L30
MathSciNet review: 1118085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathbf{k}}$ be a field of characteristic $ p > 0$ and $ A,R$ polynomial rings in two indeterminates over $ {\mathbf{k}}$. It is shown that, if $ {\mathbf{k}}[{R^p}] \subset A \subset R$ (strictly) then there exist $ x,y \in R$ such that $ R = {\mathbf{k}}[x,y]$ and $ A = {\mathbf{k}}[{x^p},y]$. (The case where $ {\mathbf{k}}$ is algebraically closed was proved by Ganong in 1979.) Another result is obtained in the situation where $ {R^{{p^n}}} \subseteq A \subseteq R$.

References [Enhancements On Off] (What's this?)

  • [1] S. Abhyankar, Lectures on expansion techniques in algebraic geometry (Notes by B. Singh), Tata Lecture Notes, vol. 57, Tata Inst. Fund. Res., Bombay, 1977. MR 542446 (80m:14016)
  • [2] S. Abhyankar and B. Singh, Embeddings of certain curves in the affine plane, Amer. J. Math. 100 (1978), 99-175. MR 0498566 (58:16663)
  • [3] D. Daigle, A property of polynomial curves over a field of positive characteristic, Proc. Amer. Math. Soc. 109 (1990), 887-894. MR 1002155 (90k:14030)
  • [4] R. Ganong, Plane Frobenius sandwiches, Proc. Amer. Math. Soc. 84 (1982), 474-478. MR 643732 (84h:13026)
  • [5] K. P. Russell, Hamburger-Noether expansions and approximate roots of polynomials, Manuscripta Math. 31 (1980), 25-95. MR 576491 (81g:14015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A35, 13F20, 14L30

Retrieve articles in all journals with MSC: 13A35, 13F20, 14L30

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society