Asymptotic behaviour of unbounded nonexpansive sequences in Banach spaces

Author:
Behzad Djafari Rouhani

Journal:
Proc. Amer. Math. Soc. **117** (1993), 951-956

MSC:
Primary 47H10; Secondary 46B15

DOI:
https://doi.org/10.1090/S0002-9939-1993-1120510-8

MathSciNet review:
1120510

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real Banach space, a nonexpansive sequence in (i.e., for all ), and the closed convex hull of the sequence .

We prove that and deduce a simple short proof for the following result, (i) If is reflexive and strictly convex, then converges weakly in to the element of minimum norm in with

**[1]**J. Diestel,*Geometry of Banach spaces--Selected topics*, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York, 1975. MR**0461094 (57:1079)****[2]**B. Djafari Rouhani,*Ergodic theorems for non expansive sequences in Hilbert spaces and related problems*, thesis, Yale University, 1981.**[3]**B. Djafari Rouhani and S. Kakutani,*Ergodic theorems for non expansive non linear operators in a Hilbert space*, preprint, 1984.**[4]**B. Djafari Rouhani,*Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces*, preprint, ICTP, Trieste, no. IC/88/31, 1988 and J. Math. Anal. Appl.**147**(1990), 465-476. MR**1050218 (91h:47069)****[5]**-,*Asymptotic behaviour of almost non expansive sequences in a Hilbert space*, preprint, ICTP, Trieste, no. IC/88/188, 1988 and J. Math. Anal. Appl.**151**(1990), 226-235. MR**1069458 (92a:47065)****[6]**-,*A note on the convergence of a numerical sequence*, internal report, ICTP, Trieste, no. IC/89/204, 1989.**[7]**-,*A non linear ergodic theorem and application to a theorem of A. Pazy*, internal report, ICTP, Trieste, no. IC/89/203, 1989.**[8]**-,*A simple proof to an extension of a theorem of A. Pazy in Hilbert space*, preprint, ICTP, Trieste, no. IC/90/219, 1990.**[9]**-,*Asymptotic behaviour of unbounded trajectories for some non autonomous systems in a Hilbert space*, preprint, ICTP, Trieste, no. IC/90/181, 1990; Nonlinear Anal. (to appear). MR**1186787 (93m:47070)****[10]**K. Fan and I. Glicksberg,*Some geometric properties of the spheres in a normed linear space*, Duke Math. J.**25**(1958), 553-568. MR**0098976 (20:5421)****[11]**K. Goebel and S. Reich,*Uniform convexity, hyperbolic geometry and non expansive mappings*, Dekker, New York and Basel, 1984. MR**744194 (86d:58012)****[12]**E. Kohlberg and A. Neyman,*Asymptotic behaviour of non expansive mappings in uniformly convex Banach spaces*, Amer. Math. Monthly**88**(1981), 698-700. MR**643273 (83c:47077)****[13]**-,*Asymptotic behaviour of non expansive mappings in normed linear spaces*, Israel J. Math.**38**(1981), 269-275.**[14]**U. Krengel,*Ergodic theorems*, de Gruyter Studies in Math., vol. 6, de Gruyter, Berlin and New York, 1985. MR**797411 (87i:28001)****[15]**A. Pazy,*Asymptotic behaviour of contractions in Hilbert space*, Israel J. Math.**9**(1971), 235-240. MR**0282276 (43:7988)****[16]**-,*Non linear analysis and mechancis*, Heriot-Watt Symposium, Vol. III (R. J. Knops, ed.), Pitman Research Notes in Math., vol. 30, Longman Sci. Tech., Harlow, 1979, pp. 36-134.**[17]**A. T. Plant and S. Reich,*The asymptotics of non expansive iterations*, J. Funct. Anal.**54**(1983), 308-319. MR**724526 (85a:47055)****[18]**S. Reich,*Asymptotic behaviour of contractions in Banach spaces*, J. Math. Anal. Appl.**44**(1973), 57-70. MR**0328689 (48:7031)****[19]**-,*Asymptotic behaviour of semi-groups of non linear contractions in Banach spaces*, J. Math. Anal. Appl.**53**(1976), 277-290.**[20]**-,*On the asymptotic behaviour of non linear semi-groups and the range of accretive operators*I, II, Math. Research Center Report 2198, 1981; J. Math. Anal. Appl.**79**(1981), 113-126;**87**(1982), 134-146.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10,
46B15

Retrieve articles in all journals with MSC: 47H10, 46B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1120510-8

Article copyright:
© Copyright 1993
American Mathematical Society