A fronttracking alternative to the random choice method
Author:
Nils Henrik Risebro
Journal:
Proc. Amer. Math. Soc. 117 (1993), 11251139
MSC:
Primary 35L65; Secondary 76L05, 76M99
MathSciNet review:
1120511
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An alternative to Glimm's proof of the existence of solutions to systems of hyperbolic conservation laws is presented. The proof is based on an idea by Dafermos for the single conservation law and in some respects simplifies Glimm's original argument. The proof is based on construction of approximate solutions of which a subsequence converges. It is shown that the constructed solution satisfies Lax's entropy inequalities. The construction also gives a numerical method for solving such systems.
 [1]
P.
D. Lax, Hyperbolic systems of conservation laws. II, Comm.
Pure Appl. Math. 10 (1957), 537–566. MR 0093653
(20 #176)
 [2]
James
Glimm, Solutions in the large for nonlinear hyperbolic systems of
equations, Comm. Pure Appl. Math. 18 (1965),
697–715. MR 0194770
(33 #2976)
 [3]
Tai
Ping Liu, The deterministic version of the Glimm scheme, Comm.
Math. Phys. 57 (1977), no. 2, 135–148. MR 0470508
(57 #10259)
 [4]
Alexandre
Joel Chorin, Random choice solution of hyperbolic systems, J.
Computational Phys. 22 (1976), no. 4, 517–533.
MR
0471342 (57 #11077)
 [5]
Peter
Lax, Shock waves and entropy, Contributions to nonlinear
functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin,
Madison, Wis., 1971) Academic Press, New York, 1971,
pp. 603–634. MR 0393870
(52 #14677)
 [6]
J. H. Bick and G. F. Newell, A continuum model for twodirectional traffic flow, Quart. J. Appl. Math. 18 (1961), 191204.
 [7]
A.
J. Chorin and J.
E. Marsden, A mathematical introduction to fluid mechanics,
SpringerVerlag, New YorkHeidelberg, 1979. MR 551053
(81m:76001)
 [8]
D. W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, Amsterdam, 1977.
 [9]
Constantine
M. Dafermos, Polygonal approximations of solutions of the initial
value problem for a conservation law, J. Math. Anal. Appl.
38 (1972), 33–41. MR 0303068
(46 #2210)
 [10]
Randall
J. LeVeque, Large time step shockcapturing techniques for scalar
conservation laws, SIAM J. Numer. Anal. 19 (1982),
no. 6, 1091–1109. MR 679654
(84e:65099), http://dx.doi.org/10.1137/0719080
 [11]
H.
Holden, L.
Holden, and R.
HøeghKrohn, A numerical method for first order nonlinear
scalar conservation laws in one dimension, Comput. Math. Appl.
15 (1988), no. 68, 595–602. Hyperbolic partial
differential equations. V. MR 953567
(90c:65112), http://dx.doi.org/10.1016/08981221(88)902829
 [12]
R. HøeghKrohn and N. H. Risebro, The Riemann problem for a single conservation law in two space dimensions, Oslo Univ. Preprint series, 1988.
 [13]
Blair
K. Swartz and Burton
Wendroff, AZTEC: a front tracking code based on Godunov’s
method, Appl. Numer. Math. 2 (1986), no. 35,
385–397. MR
863995, http://dx.doi.org/10.1016/01689274(86)900413
 [14]
Joel
Smoller, Shock waves and reactiondiffusion equations,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science], vol. 258, SpringerVerlag, New YorkBerlin,
1983. MR
688146 (84d:35002)
 [15]
Tai
Ping Liu, Largetime behavior of solutions of initial and
initialboundary value problems of a general system of hyperbolic
conservation laws, Comm. Math. Phys. 55 (1977),
no. 2, 163–177. MR 0447825
(56 #6135)
 [1]
 P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537566. MR 0093653 (20:176)
 [2]
 J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697715. MR 0194770 (33:2976)
 [3]
 T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1977), 135148. MR 0470508 (57:10259)
 [4]
 A. J. Chorin, Random choice solution of hyperbolic systems, J. Comp. Phys. 22 (1976), 517533. MR 0471342 (57:11077)
 [5]
 P. D. Lax, Shock waves and entropy, Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York and London, 1971, pp. 603635. MR 0393870 (52:14677)
 [6]
 J. H. Bick and G. F. Newell, A continuum model for twodirectional traffic flow, Quart. J. Appl. Math. 18 (1961), 191204.
 [7]
 A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid dynamics, Springer, New York, 1979. MR 551053 (81m:76001)
 [8]
 D. W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, Amsterdam, 1977.
 [9]
 C. M. Dafermos, Polygonal approximation of solution to the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972), 3341. MR 0303068 (46:2210)
 [10]
 R. J. LeVeque, A large time step shockcapturing technique for scalar conservation laws, SIAM J. Numer. Anal. 19 (1982), 10511073. MR 679654 (84e:65099)
 [11]
 H. Holden, L. Holden, and R. HøeghKrohn, A numerical method for first order nonlinear scalar conservation laws in one dimension, Comput. Math. Appl. 15 (1988), 595602. MR 953567 (90c:65112)
 [12]
 R. HøeghKrohn and N. H. Risebro, The Riemann problem for a single conservation law in two space dimensions, Oslo Univ. Preprint series, 1988.
 [13]
 B. K. Swartz and B. Wendroff, Aztec: A front tracking code based on Godunovs method, Appl. Numer. Math. 2 (1986), 385397. MR 863995
 [14]
 J. Smoller, Shock waves and reactiondiffusion equations, Springer, New York, 1983. MR 688146 (84d:35002)
 [15]
 T. P. Liu, Large time behavior of solutions of initial and initialboundary problems of a general system of hyperbolic conservation laws, Comm. Math. Phys. 55 (1977), 163177. MR 0447825 (56:6135)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
35L65,
76L05,
76M99
Retrieve articles in all journals
with MSC:
35L65,
76L05,
76M99
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919931120511X
PII:
S 00029939(1993)1120511X
Article copyright:
© Copyright 1993
American Mathematical Society
