Asymptotic prime ideals related to derived functors
Authors:
Leif Melkersson and Peter Schenzel
Journal:
Proc. Amer. Math. Soc. 117 (1993), 935-938
MSC:
Primary 13E05; Secondary 13A02, 13A30, 13E10
DOI:
https://doi.org/10.1090/S0002-9939-1993-1124148-8
MathSciNet review:
1124148
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a commutative noetherian ring. Let
(resp.
) denote a noetherian (resp. artinian)
-module and
an ideal of
. It is shown that for each integer
the sets of prime ideals
and
, become for
large independent of
.
- [1]
M. Brodmann, Asymptotic stability of
, Proc. Amer. Math. Soc. 74 (1979), 16-18. MR 521865 (80c:13012)
- [2] D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford (2) 24 (1973), 47-57. MR 0316446 (47:4993)
- [3] I. G. Macdonald, Secondary representations of modules over a commutative ring, Sympos. Math., vol. 11, Academic Press, London and New York, 1973, pp. 23-43. MR 0342506 (49:7252)
- [4] H. Matsumura, Commmutative ring theory, Cambridge Univ. Press, Cambridge, 1986. MR 879273 (88h:13001)
- [5] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc. 107 (1990), 267-271. MR 1027779 (90k:13014)
- [6] R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc. (2) 34 (1986), 212-218. MR 856506 (87i:13007)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13E05, 13A02, 13A30, 13E10
Retrieve articles in all journals with MSC: 13E05, 13A02, 13A30, 13E10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1124148-8
Keywords:
Associated prime,
attached prime,
asymptotic prime,
Tor,
Ext,
Rees ring
Article copyright:
© Copyright 1993
American Mathematical Society