Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A characterization of Hardy-Orlicz spaces on planar domains

Author: Manfred Stoll
Journal: Proc. Amer. Math. Soc. 117 (1993), 1031-1038
MSC: Primary 46E10; Secondary 30D55, 46J15
MathSciNet review: 1124151
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the paper we prove that for a wide class of bounded domains $ D$ in $ \mathbb{C}$, a holomorphic function $ f$ is in the Hardy-Orlicz space $ {H_\phi }(D)$ if and only if

$\displaystyle \iint_D {\delta (z)\phi ''(\log \vert f(z)\vert)\frac{{\vert f'(z){\vert^2}}} {{\vert f(z){\vert^2}}}dx\,dy < \infty ,}$

where $ \delta (z)$ denotes the distance from $ z$ to the boundary of $ D$ and $ \phi $ is a strongly convex function on $ ( - \infty ,\infty )$ for which $ \phi ''(t)$ exists for all $ t$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E10, 30D55, 46J15

Retrieve articles in all journals with MSC: 46E10, 30D55, 46J15

Additional Information

PII: S 0002-9939(1993)1124151-8
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia