Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the zeros of the solutions of $ y''+P(z)y=0$ where $ P(z)$ is a polynomial


Author: Li-Chien Shen
Journal: Proc. Amer. Math. Soc. 117 (1993), 1057-1061
MSC: Primary 34A20; Secondary 30D20
DOI: https://doi.org/10.1090/S0002-9939-1993-1132424-8
MathSciNet review: 1132424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {z_n}\} $ be the nonzero zeros of the differential equation $ y'' + P(z)y = 0$, where $ P(z) = {a_0} + {a_1}z + {a_2}{z^2} + \cdots + {a_N}{z^N}$, and let $ {c_k} = \sum\nolimits_{n = 1}^\infty {1/z_n^k\;{\text{for}}\;k \geqslant [N/2] + 2} $. We show that $ {c_k}$ is a rational function of $ {a_n},\;n = 0,1,2, \ldots ,N$; futhermore, the successive $ {c_k}$ can be computed from previous $ {c_k}$'s by a simple recurrence relation.


References [Enhancements On Off] (What's this?)

  • [1] S. Ahmed and M. Muldoon, Reciprocal power sums of differences of zeros of special functions, SIAM J. Math. Anal. 14 (1983), 372-382. MR 688581 (84d:33016)
  • [2] E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1976. MR 0499382 (58:17266)
  • [3] Li-Chien Shen, Construction of a D.E. $ y'' + Ay = 0$ with solutions having prescribed zeros, Proc. Amer. Math. Soc. 95 (1985), 544-546. MR 810160 (87b:34005)
  • [4] Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland, Amsterdam, 1975. MR 0486867 (58:6561)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A20, 30D20

Retrieve articles in all journals with MSC: 34A20, 30D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1132424-8
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society