NORMAL SPACES WHOSE STONE-ČECH REMAINDERS
HAVE COUNTABLE TIGHTNESS

JIN-YUAN ZHOU

(Communicated by Franklin D. Tall)

Abstract. We prove, assuming PFA, that each normal space whose Stone-
Čech remainder has countable tightness is ACRIN. A normal space X is called
ACRIN if each of its regular images is normal. Fleissner and Levy proved that if
X is normal and every countably compact subset of the Stone-Čech remainder
$\beta X \setminus X$ is closed in $\beta X \setminus X$, then X is ACRIN. They asked if each normal
space whose Stone-Čech remainder has countable tightness is ACRIN. Theorem
2 gives the positive answer assuming the Proper Forcing Axiom.

It is well known that the tightness of $\beta \omega \setminus \omega$ is 2^ω. Since every not countably
compact Hausdorff space contains a closed copy of ω, the next lemma is easy
to prove.

Lemma 1. If X is a normal space and $\beta X \setminus X$ has countable tightness, then X
is countably compact.

Theorem 2 (PFA). If X is a normal space and $\beta X \setminus X$ has countable tightness,
then X is ACRIN.

Proof. Let $f: X \to Y$ be a continuous map and Y be regular. We prove that
Y is normal. By virtue of Lemma 5 of [FL] there exist Z and bf such that
$X \subseteq Z \subseteq \beta X$ and bf is a perfect map from Z onto Y with $bf|_X = f$.
Since $\beta X \setminus X$ has countable tightness, it is easy to see that the spaces X, Y,
and Z are all countably compact. Since perfect mappings preserve normality,
we only need to prove that Z is normal. Let K and L be two disjoint closed
subsets of Z. We will prove that $K^\beta X \cap L^\beta X = \emptyset$. Since X is normal, we
have $K \cap X^\beta X \cap L \cap X^\beta X = \emptyset$. Take open subsets U and V of βX
such that $U^\beta X \cap V^\beta X = \emptyset$, $K \cap X^\beta X \subseteq U$, and $L \cap X^\beta X \subseteq V$. Let $U' = U \setminus L^\beta X$,
$V' = V \setminus K^\beta X$, and $T = (K \cup L^\beta X) \setminus (U' \cup V')$. Obviously T is a closed subset
of βX and is contained in $\beta X \setminus X$. Thus T is a compact space of countable
tightness. Furthermore, $K \setminus U$ and $L \setminus V$ are contained in T and are closed
subsets of the countably compact space Z. We have proved that $K \setminus U$ and
$L \setminus V$ are countably compact subsets of a compact space of countable tightness.
By virtue of Balogh’s Theorem [Ba, 2.1], $K \setminus U$ and $L \setminus V$ are compact. Thus

Received by the editors November 23, 1990 and, in revised form, July 18, 1991.
1991 Mathematics Subject Classification. Primary 54C05, 54D15, 54D40.
we have
\[
\overline{K}^\beta X \cap \overline{L}^\beta X = (\overline{K \cap U}^\beta X \cup (K \setminus U)) \cap (\overline{L \cap V}^\beta X \cup (L \setminus V)) \\
= (\overline{K \cap U}^\beta X \cap (L \setminus V)) \cup (\overline{L \cap V}^\beta X \cap (K \setminus U)) \\
\subseteq (\overline{K}^\beta X \cap L) \cup (\overline{L}^\beta X \cap K) = \emptyset .
\]

We are done.

ACKNOWLEDGMENT

We acknowledge the referee’s help in writing this paper.

REFERENCES
