FEKETE-SZEGÖ INEQUALITIES
FOR CLOSE-TO-CONVEX FUNCTIONS

R. R. LONDON

(Communicated by Clifford J. Earle, Jr.)

Abstract. Let \(K(\beta) \) denote the class of normalised close-to-convex functions of order \(\beta \) defined in the unit disc, and let \(f \in K(\beta) \) with \(f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \). Sharp bounds are obtained for \(|a_3 - \mu a_2^2| \), where \(\mu \) is real.

1. Introduction

Let the function \(f \) be given by

\[
f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \quad (|z| < 1).
\]

A classical result of Fekete and Szegö [1] determines the maximum value of \(|a_3 - \mu a_2^2| \), as a function of the real parameter \(\mu \), for the class of univalent functions \(f \). There are now several results of this type in the literature, each of them dealing with \(|a_3 - \mu a_2^2| \) for various classes of functions \(f \) (see, e.g., [3-6]).

In this paper we consider the problem for the class \(K(\beta) \) of close-to-convex functions of order \(\beta \) in the sense of Pommerenke [7]. Thus \(f \in K(\beta) \) if and only if \(f \) is given by (1) and for some starlike function \(g \) satisfies

\[
\left| \arg \frac{zf'(z)}{g(z)} \right| \leq \frac{\pi \beta}{2}
\]

for \(|z| < 1 \) and \(\beta \geq 0 \). A recent paper by Abdel-Gawad and Thomas [2] contains a partial proof of the following theorem, the last two inequalities remaining unproved for \(\beta > 1 \).

Theorem. Let \(f \in K(\beta) \) and be given by (1). Then for \(\beta \geq 0 \)

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{1}{3}(1 + (2 - 3\mu)(\beta + 1)^2) & \text{if } \mu \leq \frac{2\beta}{3(\beta+1)}, \\
\frac{1}{3}\left(1 + 2\beta + \frac{2(2-3\mu)}{2-\beta(2-3\mu)}\right) & \text{if } \frac{2\beta}{3(\beta+1)} \leq \mu \leq \frac{2}{3}, \\
\frac{1}{3}(1 + 2\beta) & \text{if } \frac{2}{3} \leq \mu \leq \frac{2(\beta+2)}{3(\beta+1)}, \\
\frac{1}{3}(-1 + (3\mu - 2)(\beta + 1)^2) & \text{if } \mu \geq \frac{2(\beta+2)}{3(\beta+1)}.
\end{cases}
\]

Received by the editors July 5, 1990.
1991 Mathematics Subject Classification. Primary 30C45.
For each μ there are functions in $K(\beta)$ such that equality holds in all cases.

We give a simple proof of the complete theorem.

2. Proof of the theorem

We shall require the following:

Lemma [8, pp. 41, 166]. Let $h(z) = 1 + c_1 z + c_2 z^2 + \cdots$ satisfy $\text{Re} h(z) > 0 (|z| < 1)$. Then $|c_k| \leq 2$ ($k \geq 1$) and

$$|c_2 - \frac{1}{2} c_1^2| \leq 2 - \frac{1}{2} |c_1|^2.$$

Let $f \in K(\beta)$. Then it follows from (2) that we may write

$$zf'(z) = g(z)h^p(z),$$

where g is starlike and h has positive real part. Let $g(z) = z + b_2 z^2 + b_3 z^3 + \cdots$, and let h be given as in the lemma above. Then by equating coefficients we obtain

$$2a_2 = \beta c_1 + b_2$$

and

$$3a_3 = \frac{1}{2} \beta (\beta - 1)c_1^2 + \beta c_2 + \beta c_1 b_2 + b_3,$$

so, with $X = \frac{1}{2}(2 - 3\mu)$,

$$3(a_3 - \mu a_2^2) = b_3 - \frac{3}{4} \mu b_2^2 + \beta (c_2 + \frac{1}{2}(\beta X - 1)c_1^2) + \beta X c_1 b_2. \quad (3)$$

Since rotations of f also belong to $K(\beta)$, we may assume, without loss of generality, that $a_3 - \mu a_2^2$ is positive. Thus we now estimate $\text{Re}(a_3 - \mu a_2^2)$.

For some function $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ ($|z| < 1$) with positive real part, we have $z g''(z) = g(z)p(z)$; hence, by equating coefficients, $b_2 = p_1$ and $b_3 = \frac{1}{2}(p_2 + p_1^2)$. So by the lemma,

$$\text{Re}(b_2 - \frac{3}{4} \mu b_2^2) = \frac{1}{2} \text{Re}(p_2 - \frac{1}{2} p_1^2) + \frac{3}{4}(1 - \mu) \text{Re} p_1^2 \leq 1 - p^2 + (1 + 2X)p^2 \cos 2\phi, \quad (4)$$

where $b_2 = p_1 = 2 \rho e^{i\phi}$ for some ρ in $[0, 1]$. We also have

$$\text{Re}(c_2 + \frac{1}{2}(\beta X - 1)c_1^2) = \text{Re}(c_2 - \frac{1}{2} c_1^2) + \frac{1}{2} \beta X \text{Re} c_1^2 \leq 2(1 - r^2) + 2\beta X r^2 \cos 2\theta, \quad (5)$$

where $c_1 = 2r e^{i\theta}$ for some r in $[0, 1]$. From (3)–(5) we obtain

$$\text{Re } 3(a_3 - \mu a_2^2) \leq 1 - p^2 + (1 + 2X)p^2 \cos 2\phi + 2\beta(1 - r^2 + r^2 \beta X \cos 2\theta) + 4\beta X r \rho \cos(\theta + \phi), \quad (6)$$

and we now proceed to maximize the right-hand side of (6). This function will be denoted $\varphi(X)$ whenever all the parameters except X are held constant.

Assume that $2\beta/3(\beta + 1) \leq \mu \leq 2/3$ so that $0 \leq X \leq 1(1 + \beta)$. The expression $-t^2 + t^2 \beta X \cos 2\theta + 2Xt$ is largest when $t = X/(1 - \beta X \cos 2\theta)$, so

$$-t^2 + t^2 \beta X \cos 2\theta + 2Xt \leq \frac{X^2}{1 - \beta X \cos 2\theta} \leq \frac{X^2}{1 - \beta X}.$$
Thus

$$\psi(X) \leq 1 + 2X + 2\beta \left(1 + \frac{X^2}{1 - \beta X}\right) = 1 + 2\beta + \frac{2(2 - 3\mu)}{2 - \beta(2 - 3\mu)},$$

and with (6) this establishes the second inequality in the theorem.

It is now to prove the first inequality. Let $\mu < 2\beta/3(\beta + 1)$, so that $X > 1/(1 + \beta)$. With $X_0 = 1/(1 + \beta)$ we have

$$\psi(X) = \psi(X_0) + 2(X - X_0)(\rho^2 \cos 2\phi + \beta^2 r^2 \cos 2\theta + 2\rho \beta r \cos(\theta + \phi))$$

$$\leq \psi(X_0) + 2(X - X_0)(\beta + 1)^2 \leq 1 + (2 - 3\mu)(\beta + 1)^2$$

as required.

Let $X_1 = -1/(1 + \beta)$. We shall find that $\psi(X_1) \leq 2\beta + 1$, and the remaining inequalities follow easily from this one. By an argument similar to the one above, we obtain

$$\psi(X) \leq \psi(X_1) + 2|X - X_1|(\beta + 1)^2 \leq -1 + (3\mu - 2)(\beta + 1)^2$$

if $X \leq X_1$, that is, $\mu \geq 2(\beta + 2)/3(\beta + 1)$. Also, for $0 \leq \lambda \leq 1$,

$$\psi(\lambda X_1) = \lambda \psi(X_1) + (1 - \lambda)\psi(0)$$

$$\leq \lambda(2\beta + 1) + (1 - \lambda)(2\beta + 1) = 2\beta + 1,$$

so $\psi(X) \leq 2\beta + 1$ for $X_1 \leq X \leq 0$, i.e., $2/3 \leq \mu \leq 2(\beta + 2)/3(\beta + 1)$.

We now show that $\psi(X_1) \leq 2\beta + 1$. We have

$$-t^2 + t^2 \beta X \cos 2\theta + 2X t \rho \cos(\theta + \phi) \leq \frac{X^2 \rho^2 \cos 2(\theta + \phi)}{1 - \beta X \cos 2\theta}$$

for all real t, so

$$\psi(X) - 1 - 2\beta \leq \rho^2 \left[-1 + (1 + 2X) \cos 2\phi + \frac{\beta X^2(1 + \cos 2(\theta + \phi))}{1 - \beta X \cos 2\theta}\right].$$

Thus we consider the inequality

$$\beta X^2(1 + \cos 2(\theta + \phi)) + (1 - \beta X \cos 2\theta)(-1 + (1 + 2X) \cos 2\phi) \leq 0$$

with $X = X_1$. After some simplification this becomes

$$\beta^2(\cos 2\phi - 1)(\cos 2\theta + 1) - \beta(1 + \cos 2\theta + \sin 2\theta \sin 2\phi) - 1 - \cos 2\phi \leq 0,$$

which is true if

$$(7) \quad 2\beta^2 \sin^2 \phi \cos^2 \theta + 2\beta \cos \theta \sin \theta \cos \phi \sin \phi + \cos^2 \phi \geq 0.$$

Now, for all real t,

$$2t^2 + 2 \sin \theta \cos \phi t + \cos^2 \phi \geq 0,$$

so by taking $t = \beta \sin \phi \cos \theta$, we obtain (7). This completes the proof of the inequalities.

An examination of the proof shows that the four inequalities in the theorem are sharp if we take $c_1 = c_2 = b_2 = 2$, $b_3 = 3$ in the first case; $c_1 = 2(2 - 3\mu)/2 - \beta(2 - 3\mu)$, $c_2 = b_2 = 2$, $b_3 = 3$ in the second; $c_1 = b_2 = 0$,
c_2 = 2, \ b_3 = 1 \ in \ the \ third; \ and \ \ c_1 = b_2 = 2i, \ c_2 = -2, \ b_3 = -3 \ in \ the \ last.

The corresponding functions f may be defined by taking f'(z) respectively as

\[
\frac{1}{(1 - z)^2} \left(\frac{1 + z}{1 - z} \right)^\beta, \quad \frac{1}{(1 - z)^2} \left(\frac{1 + z}{1 - z} + (1 - \lambda) \frac{1 - z}{1 + z} \right)^\beta, \\
\frac{1}{1 - z^2} \left(\frac{1 + z^2}{1 - z^2} \right)^\beta, \quad \frac{1}{(1 - iz)^2} \left(\frac{1 + iz}{1 - iz} \right)^\beta,
\]

where, in the second case,

\[
\lambda = \frac{2 + (1 - \beta)(2 - 3\mu)}{2(2 - \beta(2 - 3\mu))}.
\]

REFERENCES

