ON CLOSED SUBSPACES OF OPERATOR RANGES

ROBIN HARTE AND GERRY SHANNON

(Communicated by Palle E. T. Jorgensen)

Abstract. Necessary and sufficient for the closure of a linear subspace to lie in the range of a bounded linear operator is a certain “bounded preimage property” for the operator.

If \(T: X \to Y \) is a bounded linear operator between normed spaces then we shall, par abus de notation, also write [3]

\[
T: l_\infty(X) \to l_\infty(Y)
\]

for the operator induced between the corresponding spaces of bounded vector-valued sequences

\[
l_\infty(X) = \left\{ x \in X^N : \sup_n \| x_n \| < \infty \right\}.
\]

1. Theorem. If \(T \in \text{BL}(X, Y) \) is a bounded linear operator between Banach spaces and if \(M \subseteq Y \) is a linear subspace, then there is equivalence

\[
\text{cl} \: M \subseteq T(X) \iff l_\infty(M) \subseteq Tl_\infty(X).
\]

Proof. We shall show forward implication for complete \(X \) and backward implication for complete \(Y \). Whether or not either space is complete, the right-hand side of (1.1) is equivalent to

\[
T_{M}^{-1}: T_{-1}(M)/T_{-1}(0) \to Y \text{ bounded below}.
\]

Indeed if (1.2) holds then there is \(k > 0 \) for which

\[
dist(x, T_{-1}(0)) \leq k \| Tx \| \quad \text{for each } x \in T_{-1}(M),
\]

so that if \(y \in l_\infty(M) \) is arbitrary then there is \(x \in X^N \) for which

\[
y = Tx \quad \text{with dist}(x_n, T_{-1}(0)) \leq k \| y_n \|,
\]

and then \(z \in T_{-1}(0)^N \) for which

\[
\| x - z \| \leq 2 \text{dist}(x, T_{-1}(0)),
\]

giving

\[
y = T(x - z) \quad \text{with } x - z \in l_\infty(X).
\]
Conversely if (1.2) fails then there is $x \in X^N$ for which
\[T x_n \in M, \quad \|T x_n\| \to 0, \quad \text{dist}(x_n, T^{-1}(0)) \geq 1. \]
Now with
\[x'_n = \begin{cases} \|T x_n\|^{-1/2} x_n & \text{if } T x_n \neq 0, \\ n x_n & \text{if } T x_n = 0, \end{cases} \]
we have $\|T x'_n\| \to 0$ and $\text{dist}(x'_n, T^{-1}(0)) \to \infty$ so that
\[T x' \in c_0(M) \subseteq l_\infty(M) \quad \text{and} \quad T x' \not\subseteq T l_\infty(X). \]

If, in particular, the spaces X and Y are complete then condition (1.2) is also equivalent to the left-hand side of (1.1). To see this we need an auxiliary subspace
\[M^\sim = T \text{cl} T^{-1}(M). \]
Evidently
\[M \subseteq M^\sim \subseteq T(X) \cap \text{cl} M, \]
and hence, in particular,
\[T^\sim_M \text{ bounded below} \iff T^\sim_M \text{ bounded below.} \]
The operator T^\sim_M is one-to-one, with range M^\sim, and if X is complete defined on the complete space
\[T^{-1}(M^\sim)/T^{-1}(0) = \text{cl} T^{-1}(M)/T^{-1}(0), \]
so that
\[T^\sim_M \text{ bounded below} \Rightarrow M^\sim = \text{cl} M^\sim \]
since M^\sim is complete. By (1.6) this gives
\[M^\sim = \text{cl} M, \]
and hence also the left-hand side of (1.1) holds. Conversely if this happens then $\text{cl} M$ is complete (if Y is) and the open mapping theorem gives
\[T^\sim_{\text{cl} M}: T^{-1}(\text{cl} M)/T^{-1}(0) \to Y \text{ bounded below}, \]
and hence also (1.2). \(\square\)

The same argument gives the analogue of Theorem 1 in which the right-hand side of (1.1) is replaced by the corresponding property for subsets
\[\beta(M) \subseteq T \beta(X), \]
where $\beta(X)$ denotes the bounded subsets of X; an easy consequence is that compact operators on complete spaces have the "Calkin property" [4; 2, Theorem III.1.12]
\[\text{cl} M \subseteq T(X) \Rightarrow M \text{ finite dimensional.} \]

Notice that we have proved two versions of Theorem 1: we also have
\[\text{cl} M \subseteq T(X) \Leftrightarrow c_0(M) \subseteq T l_\infty(X). \]
In the particular case $M = T(X)$ Albrecht and Mehta [1, Lemma 2.1] have shown that also
\[\text{cl} M \subseteq T(X) \Leftrightarrow l_\infty(M) \subseteq T(X) + c_0(Y), \]
which says that the image of M in the "enlargement" of Y [3, Definition 1.9.2] is included in the range of the enlargement of T.

\[\text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use} \]
REFERENCES

DEPARTMENT OF PURE MATHEMATICS, QUEEN’S UNIVERSITY OF BELFAST, BELFAST BT7 1NN, IRELAND
E-mail address: r.harte@v2.qub.ac.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULSTER, COLERaine BT52 1SA, IRELAND
E-mail address: cdbql3@ucvax.ulster.ac.uk