ADDENDUM TO

"REMARKS ON WEAK COMPACTNESS OF OPERATORS DEFINED ON CERTAIN INJECTIVE TENSOR PRODUCTS"

G. EMMANUELE

(Communicated by Palle E. T. Jorgensen)

The idea (used in [1]) of embedding $X \otimes_{\varepsilon} Y$ into $X^{**} \otimes_{\varepsilon} Y$, when X is an \mathcal{L}_∞ space can also be used to get the following results.

Theorem 1. Let X be an \mathcal{L}_∞ space and Y a Banach space. Then $X \otimes_{\varepsilon} Y$ contains a complemented copy of l^1 iff Y does the same.

Proof. If l^1 embeds complementably into $X \otimes_{\varepsilon} Y$, then c_0 embeds into $(X \otimes_{\varepsilon} Y)^*$, a closed subspace of $(X^{**} \otimes_{\varepsilon} Y)^*$; then l^1 embeds complementably into $X^{**} \otimes_{\varepsilon} Y$, that is, a complemented subspace of some $C(K, Y)$ space (see Theorem 2 of [1]). Hence, it is enough to apply the main result of [2] to get our thesis.

Theorem 2. Let X be a Banach space with X^* isometric to an L^1 space. If Y is a reflexive Banach space, then $X \otimes_{\varepsilon} Y$ has property (V) of Pelczynski.

Proof. Let T be an unconditionally converging operator on $X \otimes_{\varepsilon} Y$. The results of [3] imply that T^{**} is unconditionally converging, too. Hence T^{**} restricted to $X^{**} \otimes_{\varepsilon} Y$ is unconditionally converging; since $X^{**} \otimes_{\varepsilon} Y$ is complemented in some $C(K, Y)$ space, it inherits property (V) of Pelczynski. Hence T^{**}, and so T, are weakly compact. We are done.

REFERENCES

Department of Mathematics, University di Catania, Viale A Doria 6, 95125 Catania, Italy

Received by the editors January 29, 1992.

1991 Mathematics Subject Classification. Primary 47B99, 46M05.