Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some applications of the Euler-Jacobi formula to differential equations


Authors: Anna Cima, Armengol Gasull and Francesc Mañosas
Journal: Proc. Amer. Math. Soc. 118 (1993), 151-163
MSC: Primary 58F21; Secondary 34C05
DOI: https://doi.org/10.1090/S0002-9939-1993-1150647-9
MathSciNet review: 1150647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Euler-Jacobi formula gives an algebraic relation between the critical points of a vector field and their indices. Using this formula we obtain an upper bound for the number of centers that a planar polynomial differential equation can have and study the distribution of the critical points for planar quadratic and cubic differential equations.


References [Enhancements On Off] (What's this?)

  • [AVG] V. Arnold, A. Varchenko, and S. Goussein-Zude, Singularités des applications différentiables, Mir, Moscow, 1982.
  • [B] A. N. Berlinskii, On the behaviour of the integral curves of a differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1960), 3-18. MR 0132249 (24:A2095)
  • [BK] E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser, Basel, Boston, and Stuttgart, 1986.
  • [C] W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293-304. MR 0196182 (33:4374)
  • [Ch] C. Chicone and T. Jinghuang, On general properties of quadratic systems, Amer. Math. Monthly 81 (1982), 167-178. MR 645790 (84f:34044)
  • [CL] A Cima and J. Llibre, Configurations of fans and nests of limit cycles for polynomial vector fields in the plane, J. Differential Equations 82 (1989), 71-97. MR 1023302 (90m:58167)
  • [CGM] A. Cima, A. Gasull, and F. Mañosas, On Hamiltonian planar vector fields, J. Differential Equations (to appear).
  • [F] W. Fulton, Algebraic curves. An introduction to algebraic geometry, Benjamin, New York, 1969. MR 0313252 (47:1807)
  • [K] A. G. Khovanskii, Index of a polynomial vector field, Funktsional. Anal. i Prilozhen. 13 (1979), 49-58. MR 527521 (80f:58033)
  • [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978. MR 507725 (80b:14001)
  • [Ko] R. E. Kooij, A cubic system with $ (4, - 3,2)$ configuration, preprint, Univ. Tech. of Delft, 1991.
  • [S] A. Sestier, Note on a theorem of Berlinskii, Proc. Amer. Math. Soc. 78 (1980), 358-360. MR 553376 (80k:34041)
  • [YY] Ye Yanqian and Ye Weiyin, A generalization of Berlinskii's theorem to cubic and quartic differential systems, preprint, 1988. MR 977808 (89m:34038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F21, 34C05

Retrieve articles in all journals with MSC: 58F21, 34C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1150647-9
Keywords: Differential equation, critical point, Euler Jacobi formula, center point
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society