Some applications of the EulerJacobi formula to differential equations
Authors:
Anna Cima, Armengol Gasull and Francesc Mañosas
Journal:
Proc. Amer. Math. Soc. 118 (1993), 151163
MSC:
Primary 58F21; Secondary 34C05
MathSciNet review:
1150647
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The EulerJacobi formula gives an algebraic relation between the critical points of a vector field and their indices. Using this formula we obtain an upper bound for the number of centers that a planar polynomial differential equation can have and study the distribution of the critical points for planar quadratic and cubic differential equations.
 [AVG]
V. Arnold, A. Varchenko, and S. GousseinZude, Singularités des applications différentiables, Mir, Moscow, 1982.
 [B]
A.
N. Berlinskiĭ, On the behavior of the integral curves of a
differential equation, Izv. Vysš. Učebn. Zaved.
Matematika 1960 (1960), no. 2 (15), 3–18
(Russian). MR
0132249 (24 #A2095)
 [BK]
E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser, Basel, Boston, and Stuttgart, 1986.
 [C]
W.
A. Coppel, A survey of quadratic systems, J. Differential
Equations 2 (1966), 293–304. MR 0196182
(33 #4374)
 [Ch]
Carmen
Chicone and Jing
Huang Tian, On general properties of quadratic systems, Amer.
Math. Monthly 89 (1982), no. 3, 167–178. MR 645790
(84f:34044), http://dx.doi.org/10.2307/2320199
 [CL]
Anna
Cima and Jaume
Llibre, Configurations of fans and nests of limit cycles for
polynomial vector fields in the plane, J. Differential Equations
82 (1989), no. 1, 71–97. MR 1023302
(90m:58167), http://dx.doi.org/10.1016/00220396(89)90168X
 [CGM]
A. Cima, A. Gasull, and F. Mañosas, On Hamiltonian planar vector fields, J. Differential Equations (to appear).
 [F]
William
Fulton, Algebraic curves. An introduction to algebraic
geometry, W. A. Benjamin, Inc., New YorkAmsterdam, 1969. Notes
written with the collaboration of Richard Weiss; Mathematics Lecture Notes
Series. MR
0313252 (47 #1807)
 [K]
A.
G. Hovanskiĭ, The index of a polynomial vector field,
Funktsional. Anal. i Prilozhen. 13 (1979), no. 1,
49–58, 96 (Russian). MR 527521
(80f:58033)
 [GH]
Phillip
Griffiths and Joseph
Harris, Principles of algebraic geometry, WileyInterscience
[John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
(80b:14001)
 [Ko]
R. E. Kooij, A cubic system with configuration, preprint, Univ. Tech. of Delft, 1991.
 [S]
Andrés
Sestier, Note on a theorem of
Berlinskiĭ, Proc. Amer. Math. Soc.
78 (1980), no. 3,
358–360. MR
553376 (80k:34041), http://dx.doi.org/10.1090/S00029939198005533766
 [YY]
Yan
Qian Ye and Wei
Yin Ye, A generalization of Berlinskiĭ’s theorem to
cubic and quartic differential system, Ann. Differential Equations
4 (1988), no. 4, 503–509. MR 977808
(89m:34038)
 [AVG]
 V. Arnold, A. Varchenko, and S. GousseinZude, Singularités des applications différentiables, Mir, Moscow, 1982.
 [B]
 A. N. Berlinskii, On the behaviour of the integral curves of a differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1960), 318. MR 0132249 (24:A2095)
 [BK]
 E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser, Basel, Boston, and Stuttgart, 1986.
 [C]
 W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293304. MR 0196182 (33:4374)
 [Ch]
 C. Chicone and T. Jinghuang, On general properties of quadratic systems, Amer. Math. Monthly 81 (1982), 167178. MR 645790 (84f:34044)
 [CL]
 A Cima and J. Llibre, Configurations of fans and nests of limit cycles for polynomial vector fields in the plane, J. Differential Equations 82 (1989), 7197. MR 1023302 (90m:58167)
 [CGM]
 A. Cima, A. Gasull, and F. Mañosas, On Hamiltonian planar vector fields, J. Differential Equations (to appear).
 [F]
 W. Fulton, Algebraic curves. An introduction to algebraic geometry, Benjamin, New York, 1969. MR 0313252 (47:1807)
 [K]
 A. G. Khovanskii, Index of a polynomial vector field, Funktsional. Anal. i Prilozhen. 13 (1979), 4958. MR 527521 (80f:58033)
 [GH]
 P. Griffiths and J. Harris, Principles of algebraic geometry, WileyInterscience, New York, 1978. MR 507725 (80b:14001)
 [Ko]
 R. E. Kooij, A cubic system with configuration, preprint, Univ. Tech. of Delft, 1991.
 [S]
 A. Sestier, Note on a theorem of Berlinskii, Proc. Amer. Math. Soc. 78 (1980), 358360. MR 553376 (80k:34041)
 [YY]
 Ye Yanqian and Ye Weiyin, A generalization of Berlinskii's theorem to cubic and quartic differential systems, preprint, 1988. MR 977808 (89m:34038)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
58F21,
34C05
Retrieve articles in all journals
with MSC:
58F21,
34C05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199311506479
PII:
S 00029939(1993)11506479
Keywords:
Differential equation,
critical point,
Euler Jacobi formula,
center point
Article copyright:
© Copyright 1993 American Mathematical Society
