The Euler characteristic of projectively flat manifolds with amenable fundamental groups

Authors:
Hyuk Kim and Hyunkoo Lee

Journal:
Proc. Amer. Math. Soc. **118** (1993), 311-315

MSC:
Primary 57R20

DOI:
https://doi.org/10.1090/S0002-9939-1993-1151814-0

MathSciNet review:
1151814

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Euler characteristic of a closed projectively flat manifold with amenable fundamental group is shown to be nonnegative, and in fact zero if we further assume that the developing map is injective and the fundamental group is infinite.

**[Go]**W. M. Goldman,*Geometric structures on manifolds and varieties of representations*, Geometry of Group Representations (W. M. Goldman and A. R. Magid, eds.), Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 169-198. MR**957518 (90i:57024)****[Gr]**F. P. Greenleaf,*Invariant means on topological groups*, Van Nostrand Math. Studies, no. 16, Van Nostrand, Princeton, NJ, 1969. MR**0251549 (40:4776)****[Ho]**H. Hopf,*Differential geometry in the large*, Lecture Notes in Math., vol. 1000, Springer, Berlin, 1983. MR**707850 (85b:53001)****[HT]**M. W. Hirsch and W. P. Thurston,*Foliated bundles, invariant measures and flat manifolds*, Ann. of Math. (2)**101**(1975), 369-390. MR**0370615 (51:6842)****[KL]**H. Kim and H. Lee,*The Euler characteristic of a certain class of projectively flat manifolds*, Topology Appl.**40**(1991), 195-201. MR**1123263 (92h:57043)****[Mi]**J. Milnor,*On the existence of a connection with curvature zero*, Comment. Math. Helv.**32**(1957), 215-223. MR**0095518 (20:2020)****[NY]**T. Nagano and K. Yagi,*The affine structures on the real two-torus*, Osaka J. Math.**11**(1974), 181-210. MR**0377917 (51:14086)****[Th]**W. P. Thurston,*The geometry and topology of*-*manifolds*, preprint, 1977.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57R20

Retrieve articles in all journals with MSC: 57R20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1151814-0

Keywords:
Euler characteristic,
projectively flat manifold,
polyhedral Gauss-Bonnet formula

Article copyright:
© Copyright 1993
American Mathematical Society