A TRANSITIVITY THEOREM FOR ALGEBRAS OF ELEMENTARY OPERATORS

BOJAN MAGAJNA

(Communicated by Palle E. T. Jorgensen)

Abstract. Let \(A \) be a C*-algebra and \(\mathcal{E} \) the algebra of all elementary operators on \(A \), and let \(a = (a_1, \ldots, a_n) \), \(b = (b_1, \ldots, b_n) \) \(\in A^n \). It is proved that \(b \) is contained in the closure of the set \(\{(Ea_1, \ldots, Ea_n) : E \in \mathcal{E}\} \) if and only if each complex linear combination \(\sum_{j=1}^{n} \lambda_j b_j \) is contained in the closed two-sided ideal generated by \(\sum_{j=1}^{n} \lambda_j a_j \). In particular, a bounded linear operator on \(A \) preserves all closed two-sided ideals if and only if it is in the strong closure of \(\mathcal{E} \).

1. Introduction, motivation, and notation

An elementary operator on a ring \(A \) is a map \(E : A \rightarrow A \) of the form

\[
E x = \sum_{i=1}^{m} u_i x v_i \quad (x \in A),
\]

where \(\bar{u} = (u_1, \ldots, u_m) \) and \(\bar{v} = (v_1, \ldots, v_m) \) are fixed \(m \)-tuples of elements of \(A \). In the last decade there has been considerable interest in such operators, especially in the cases when \(A \) is the algebra \(B(H) \) of all bounded operators on a Hilbert space \(H \), the Calkin algebra or a general prime C*-algebra (see \([1, 7, 8]\) and their bibliographies). In this note we will be concerned with algebras of elementary operators on general C*-algebras.

Our study here is motivated by the following classical algebraic considerations. For any unital algebra \(A \) (over some field) the set \(\mathcal{E} \) of all elementary operators on \(A \) is again an algebra (with the usual operations of addition, multiplication by scalars, and composition of operators). The algebra \(A \) itself can be regarded as a (left) module over \(\mathcal{E} \), the submodules of which are precisely the two-sided ideals of \(A \), and the module endomorphisms of \(A \) are just the multiplications by elements of the centre \(C \) of \(A \). For any positive integer \(n \) the direct sum \(A^n \) of \(n \) copies of \(A \) is then, of course, also an \(\mathcal{E} \)-module. Let us consider the following question.

Given \(\bar{a}, \bar{b} \in A^n \), under what conditions does there exist an elementary operator \(E \in \mathcal{E} \) such that \(E\bar{a} = \bar{b} \) (that is, \(Ea_j = b_j \) for \(j = 1, \ldots, n \))?
One necessary condition is obvious: since \(Ea_j = b_j \) \((j = 1, \ldots, n)\) implies that \(E(\sum_{j=1}^n \lambda_j a_j) = \sum_{j=1}^n \lambda_j b_j \) for arbitrary central elements \(\lambda_j \in \mathcal{A} \), we see that \(\sum_{j=1}^n \lambda_j b_j \) must be in the two-sided ideal generated by \(\sum_{j=1}^n \lambda_j a_j \). To shorten the notation, for every \(\vec{\lambda} = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n \) and every \(\vec{x} = (x_1, \ldots, x_n) \) the linear combination \(\sum_{j=1}^n \lambda_j x_j \) will be denoted by \(\vec{\lambda} \cdot \vec{x} \). Also, let us agree that the word 'ideal' means a two-sided ideal and, for each \(x \in \mathcal{A} \), denote by \(\langle x \rangle \) the ideal generated by \(x \). We may now ask the following

Question 1. Is the condition that \(\vec{\lambda} \cdot \vec{b} \in \langle \vec{\lambda} \cdot \vec{a} \rangle \) for each \(\vec{\lambda} \in \mathbb{C}^n \) also sufficient for the existence of an elementary operator \(E \) on \(\mathcal{A} \) such that \(Ea = \vec{b} \)?

In the special case, when \(\mathcal{A} \) has no nontrivial ideals, the answer to the last question is affirmative. Namely, in this case the condition reduces to the requirement that \(\vec{\lambda} \cdot \vec{a} = 0 \) implies \(\vec{\lambda} \cdot \vec{b} = 0 \) (for each \(\vec{\lambda} \in \mathbb{C}^n \)), and since \(\mathcal{A} \) is a simple \(\mathbb{C} \)-module, the existence of \(E \in \mathbb{C} \) satisfying \(Ea = \vec{b} \) follows from the Jacobson density theorem \([11, p. 220]\). In general, however, the answer to Question 1 is negative, as is shown by the following example.

Example. Let \(\mathcal{H} \) be an infinite-dimensional (complex) vector space, \(\mathcal{L} \) the algebra of all linear operators on \(\mathcal{H} \), \(\mathcal{F} \) the ideal of all finite rank operators, and \(\mathcal{C} \in \mathcal{L} \) a fixed operator such that \(\mathcal{C} \not\in \mathcal{F} \) and \(\mathcal{C}^2 \in \mathcal{F} \). Let \(\mathcal{A} \) be the subalgebra of \(\mathcal{L} \) generated by \(\mathcal{F} \), \(\mathcal{C} \), and the identity operator \(1 \), and put \(\vec{a} = (1, \mathcal{C}) \), \(\vec{b} = (1, \mathcal{C}^2) \). Then clearly the centre of \(\mathcal{A} \) consists of scalars only, and it is easy to verify that the only proper ideals in \(\mathcal{A} \) are \(0 \), \(\mathcal{F} \), and the ideal generated by \(\mathcal{F} \cup \{ \mathcal{C} \} \). It follows that, with \(\vec{\lambda} = (\lambda_1, \lambda_2) \in \mathbb{C}^2 \), the ideal \(\langle \vec{\lambda} \cdot \vec{a} \rangle = \langle \lambda_1 + \lambda_2 \mathcal{C} \rangle \) is proper only if \(\lambda_1 = 0 \), and the condition \(\vec{\lambda} \cdot \vec{b} \in \langle \vec{\lambda} \cdot \vec{a} \rangle \) is satisfied for all \(\vec{\lambda} \in \mathbb{C}^2 \). On the other hand, we shall now see that there is no elementary operator \(E \) on \(\mathcal{A} \) such that \(E\vec{a} = \vec{b} \).

Assume to the contrary, that there exist \(u_i, v_i \in \mathcal{A} \) \((i = 1, \ldots, m)\) such that

\[
\sum_{i=1}^m u_i 1 v_i = 1 \quad \text{and} \quad \sum_{i=1}^m u_i \mathcal{C} v_i = \mathcal{C}^2.
\]

Since the quotient algebra \(\mathcal{A} / \mathcal{F} \) is obviously commutative, the last two identities imply that \(\mathcal{C}^2 = \mathcal{C} \pmod{\mathcal{F}} \), but this is in contradiction with the fact that \(\mathcal{C} \not\in \mathcal{F} \), \(\mathcal{C}^2 \in \mathcal{F} \).

We are now going to say a few words about the analogy of the above purely algebraic question in the context of Banach algebras. Let \(\mathcal{A} \) be a complex unital Banach algebra, and denote by \([x] \) the closed ideal generated by an element \(x \in \mathcal{A} \). Given a positive integer \(n \) and \(\vec{a}, \vec{b} \in \mathbb{C}^n \) we may now ask

Question 2. When does there exist a sequence of elementary operators \(E_k \) \((k = 1, 2, \ldots)\) on \(\mathcal{A} \) such that \(E_k \vec{a} \) converge to \(\vec{b} \)?

Obviously a necessary condition for the existence of such a sequence of elementary operators is that \(\vec{\lambda} \cdot \vec{b} \in [\vec{\lambda} \cdot \vec{a}] \) for each \(\vec{\lambda} \in \mathbb{C}^n \), but a simple modification of the example shows that this condition is not sufficient. (Namely, in the Example we replace \(\mathcal{L} \) by the algebra \(\mathcal{B}(\mathcal{H}) \) of all bounded linear operators on a separable Hilbert space \(\mathcal{H} \), and \(\mathcal{F} \) by the ideal \(\mathcal{F}(\mathcal{H}) \) of all
compact operators; we choose \(c \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{H}(\mathcal{H}) \) so that \(c^2 \in \mathcal{H}(\mathcal{H}) \), and let \(\mathcal{A} \) be the Banach algebra generated by \(\mathcal{H}(\mathcal{H}), c \), and the identity operator.)

Concerning general Banach algebras, we state here only one simple result.

Proposition 1.1. Let \(\mathcal{A} \) be a complex unital Banach algebra, and assume that \(\bar{a} = (a_1, ..., a_n) \in \mathcal{A}^n \) is such that \([\bar{\lambda} \cdot \bar{a}] = \mathcal{A} \) for every \(\bar{\lambda} \neq 0, \bar{\lambda} \in \mathbb{C}^n \). Then for every \(\bar{b} = (b_1, ..., b_n) \in \mathcal{A}^n \) there exists an elementary operator \(E \) on \(\mathcal{A} \) such that \(E\bar{a} = \bar{b} \).

Proof. The proof is by an induction on \(n \). The case \(n = 1 \) is trivial, so let \(n > 1 \). We must prove that \(\mathcal{B} = \mathcal{A}^n \), and for this it suffices to prove that there exists \(F_n = F \in \mathcal{E} \) satisfying

\[
F a_j = 0 \quad \text{for} \quad j = 1, ..., n-1 \quad \text{and} \quad \langle F a_n \rangle = \mathcal{A}.
\]

For then, by the same argument, there exists for each \(i = 1, ..., n \) an \(F_i \in \mathcal{E} \) satisfying \(F_i a_j = 0 \) for \(j \neq i \) and \(\langle F_i a_i \rangle = \mathcal{A} \), and choosing \(E_i \in \mathcal{E} \) so that \(E_i F_i a_i = b_i \) (which is possible, since \(\langle F_i a_i \rangle = \mathcal{A} \)), we see that the operator \(E \triangleq \sum_{i=1}^{n} E_i F_i \) then satisfies \(E\bar{a} = \bar{b} \). To prove the existence of \(F \) satisfying (1), suppose, to the contrary, that no such \(F \) exists, and denote by \(\mathcal{N} \) the left ideal in \(\mathcal{E} \) consisting of all \(F \in \mathcal{E} \) that satisfy \(F(a_1, ..., a_{n-1}) = 0 \). Note that \(\mathcal{N} a_n \) is an \(\mathcal{E} \)-submodule of \(\mathcal{A} \) and hence, an ideal in \(\mathcal{A} \). Since by assumption no \(F \in \mathcal{E} \) satisfies (1), \(1 \notin \mathcal{N} a_n \); therefore, \(\mathcal{N} a_n \) is contained in some proper maximal ideal \(\mathcal{M} \) of \(\mathcal{A} \). By the induction hypothesis we have \(\mathcal{E}(a_1, ..., a_{n-1}) = \mathcal{A}^{n-1} \). Since by \(\mathcal{N} a_n \subseteq \mathcal{M} \), the map

\[
\varphi: \mathcal{A}^{n-1} \to \mathcal{A} / \mathcal{M}, \quad \varphi(F a_1, ..., F a_{n-1}) \triangleq F a_n + \mathcal{M} \quad (F \in \mathcal{E})
\]

is a well-defined homomorphism of \(\mathcal{E} \)-modules. Let \(\varphi_1, ..., \varphi_{n-1} \) be the components of \(\varphi \) (that is, \(\varphi_i: \mathcal{A} \to \mathcal{A} / \mathcal{M} \) are \(\mathcal{E} \)-module homomorphisms such that \(\varphi_j(x_1, ..., x_{n-1}) = \sum_{j=1}^{n-1} \varphi_j(x_j) \) for each \((x_1, ..., x_{n-1}) \in \mathcal{A}^{n-1} \)). For each \(j \) the kernel of \(\varphi_j \) must contain \(\mathcal{M} \) (since for each \(m \in \mathcal{M} \) we have \(\varphi_j(m) = \varphi_j(m1) = m \varphi_j(1) = 0 \) in \(\mathcal{A} / \mathcal{M} \)). Hence \(\varphi_j \) induces an endomorphism \(\lambda_j \) of the \(\mathcal{E} \)-module \(\mathcal{A} / \mathcal{M} \). Such an endomorphism is necessarily a multiplication by a central element of \(\mathcal{A} / \mathcal{M} \), but the centre of each simple algebra is a field and the only field among the complex Banach algebras is the field \(\mathbb{C} \) of all complex numbers. It follows that \(\lambda_j \in \mathbb{C} \) for each \(j \). By the definition of \(\varphi \) we now have

\[
a_n + \mathcal{M} = \varphi(a_1, ..., a_{n-1}) = \sum_{j=1}^{n-1} \lambda_j a_j + \mathcal{M}.
\]

Hence \(a_n - \sum_{j=1}^{n-1} \lambda_j a_j \in \mathcal{M} \), but this contradicts the assumption that \([\bar{\lambda} \cdot \bar{a}] = \mathcal{A} \) for each nonzero \(\bar{\lambda} \in \mathbb{C}^n \).

In the remaining part of this note we confine our attention to \(C^* \)-algebras, where the necessary condition that \(\bar{\lambda} \cdot \bar{b} \in [\bar{\lambda} \cdot \bar{a}] \) for each \(\bar{\lambda} \in \mathbb{C}^n \) turns out to be sufficient also for \(\bar{b} \) to be in the norm closure of the set \(\mathcal{E} \bar{a} \). At the same time the analogous question in the context of von Neumann algebras is answered.
At the end we shall also consider the so-called range inclusion problem for
elementary operators on factors.

2. The case of C^*-algebras

Theorem 2.1. Let \mathcal{A} be a C^*-algebra, \mathcal{E} the algebra of all elementary operators on \mathcal{A}, n a positive integer, and $\tilde{a}, \tilde{b} \in \mathcal{A}^n$. Then \tilde{b} belongs to the norm closure $\overline{\mathcal{E} \tilde{a}}$ of $\mathcal{E} \tilde{a}$ if and only if for each $\tilde{\lambda} \in \mathbb{C}^n$ the element $\tilde{\lambda} \cdot \tilde{b}$ is contained in the closed ideal $[\tilde{\lambda} \cdot \tilde{a}]$ generated by $\tilde{\lambda} \cdot \tilde{a}$.

If \mathcal{A} is a von Neumann algebra, then \tilde{b} belongs to the closure $\overline{\mathcal{E} \tilde{a}}$ of $\mathcal{E} \tilde{a}$ in the weak operator topology of \mathcal{A}^n if and only if for each $\tilde{\lambda} \in \mathbb{C}^n$ (where \mathcal{C} is the centre of \mathcal{A}) the relation $\tilde{\lambda} \cdot \tilde{a} = 0$ implies $\tilde{\lambda} \cdot \tilde{b} = 0$.

For a von Neumann algebra $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H})$ we denote by $M_{m,n}(\mathcal{B})$ the set of all $m \times n$ matrices with entries from \mathcal{B}, and we let $M_n(\mathcal{B}) = M_{n,n}(\mathcal{B})$. Further, we identify \mathcal{B}^n with $M_{n,1}(\mathcal{B})$ so that elements of \mathcal{B}^n are regarded as operators from \mathcal{B} to \mathcal{B}^n. To prove Theorem 2.1 we first need a generalization of the well-known fact that every weakly closed ideal in a von Neumann algebra is generated by a central projection [4, p. 443].

Lemma 2.2. Let \mathcal{B} be a von Neumann algebra acting on a Hilbert space \mathcal{H}. Then for each right \mathcal{B}-submodule \mathcal{M} in \mathcal{B}^n which is closed in the weak operator topology there exists an idempotent $p \in M_n(\mathcal{B})$ such that $\mathcal{M} = p\mathcal{B}^n$. Moreover, if \mathcal{M} is an \mathcal{B}-bimodule, then $p \in M_n(\mathcal{C})$, where \mathcal{C} is the centre of \mathcal{B}.

Proof. Since \mathcal{M} is a right \mathcal{B}-module, we have

$$\mathcal{M} = \mathcal{M} \mathcal{B} = \mathcal{M} M_{1,n}(\mathcal{B}) M_{n,1}(\mathcal{B}).$$

Observe that $\mathcal{M} M_{1,n}(\mathcal{B})$ is a right ideal in the von Neumann algebra $M_n(\mathcal{B})$. Hence there exists a projection $p \in M_n(\mathcal{B})$ such that $\mathcal{M} M_{1,n}(\mathcal{B}) = p M_n(\mathcal{B})$. It follows that

$$\mathcal{M} = \mathcal{M} M_{1,n}(\mathcal{B}) M_{n,1}(\mathcal{B}) \subseteq p M_n(\mathcal{B}) M_{n,1}(\mathcal{B}) = p M_n(\mathcal{B}).$$

Since \mathcal{M} is closed in the weak operator topology, the reverse inclusion also holds:

$$\mathcal{M} = \mathcal{M} M_{1,n}(\mathcal{B}) M_{n,1}(\mathcal{B}) \supseteq \mathcal{M} M_{1,n}(\mathcal{B}) M_{n,1}(\mathcal{B}) = p M_n(\mathcal{B}) M_{n,1}(\mathcal{B}).$$

Hence $\mathcal{M} = p M_{n,1}(\mathcal{B}) = p\mathcal{B}^n$.

Finally, suppose that $\mathcal{M} \subseteq p\mathcal{B}^n$ for some projection $p \in M_n(\mathcal{B})$, and we must now show that $p \in M_n(\mathcal{C})$. Denote by $\mathcal{B}^{(n)}$ the subalgebra of $M_n(\mathcal{B})$ consisting of all diagonal matrices with the same element along the diagonal. Since \mathcal{M} is a left \mathcal{B}-module, we have $\mathcal{B}^{(n)} \mathcal{M} \subseteq \mathcal{M}$ or (equivalently) $(1-p)\mathcal{B}^{(n)} p\mathcal{B}^n = 0$. This implies that $(1-p)\mathcal{B}^{(n)} p = 0$; hence, p commutes with the von Neumann algebra $\mathcal{B}^{(n)}$. It is well known (and easy to verify) that the commutant of $\mathcal{B}^{(n)}$ is $M_n(\mathcal{B}')$ (where \mathcal{B}' is the commutant of \mathcal{B}); hence, $p \in M_n(\mathcal{B}) \cap M_n(\mathcal{B}') = M_n(\mathcal{B} \cap \mathcal{B}') = M_n(\mathcal{C})$. □

Proof of Theorem 2.1. We may identify the C^*-algebra \mathcal{A} with its image under the universal representation on some Hilbert space \mathcal{H}. It is well known, then,
that each bounded linear functional on \(\mathcal{A} \) can be uniquely extended to a weak-operator continuous linear functional on the weak-operator closure \(\overline{\mathcal{A}} \) of \(\mathcal{A} \) and, consequently, that \(\overline{\mathcal{A}} = \mathcal{A} \cap \overline{\mathcal{A}} \) for each convex subset \(\mathcal{K} \) of \(\mathcal{A} \) (where one bar denotes the closure in the weak operator topology and two bars denote the norm closure; see \([4, p. 713]\)). It is clear that (if \(n \) is finite) these properties hold also for \(\mathcal{A}^n \) (in place of \(\mathcal{A} \)); in particular, for each \(\tilde{a} \in \mathcal{A}^n \) we have \(\overline{\tilde{a}^*} = \mathcal{A}^n \cap \overline{\tilde{a}} \). Let \(\tilde{b} \in \mathcal{A}^n \) be such that \(\tilde{b} \notin \overline{\tilde{a}} \). Then \(\tilde{b} \notin \overline{\tilde{a}} \). Since \(\overline{\tilde{a}} \) is an \(\mathcal{A} \)-bimodule in \(\mathcal{A}^n \), by Lemma 2.2 there exists a projection \(p \in M_n(\mathcal{C}) \) (where \(\mathcal{C} \) is the centre of \(\overline{\mathcal{A}} \)) such that \(\overline{\tilde{a}} = p\overline{\tilde{a}}^n \). With \(q = 1 - p \), we now have \(q\tilde{a} = 0 \) and \(q\tilde{b} \neq 0 \) (since \(\tilde{b} \notin \overline{\tilde{a}} \)). Thus, if \(c_j \) \((j = 1, \ldots, n)\) are the entries of a suitable row of \(q \), then

\[
\sum_{j=1}^{n} c_j a_j = 0, \quad \sum_{j=1}^{n} c_j b_j \neq 0,
\]

and \(c_j \in \mathcal{C} \) for each \(j \). Now choose any irreducible representation \(\pi \) of \(\overline{\mathcal{A}} \) such that \(\pi(\sum_{j=1}^{n} c_j b_j) \neq 0 \) (this is possible by elementary \(C^* \)-theory \([10, p. 147]\)). Since the centre of each irreducible algebra consists only of scalar multiples of the identity we have \(\pi(c_j) = \lambda_j 1 \), where \(\lambda_j \in \mathcal{C} \). Hence relations (2) imply

\[
\sum_{j=1}^{n} \lambda_j \pi(a_j) = 0 \quad \text{and} \quad \sum_{j=1}^{n} \lambda_j \pi(b_j) \neq 0
\]

or

\[
\sum_{j=1}^{n} \lambda_j a_j \in \ker \pi \cap \mathcal{A} \quad \text{and} \quad \sum_{j=1}^{n} \lambda_j b_j \notin \ker \pi \cap \mathcal{A}.
\]

Thus, with \(\tilde{\lambda} = (\lambda_1, \ldots, \lambda_n) \), we have \(\tilde{\lambda} \cdot \tilde{b} \notin [\tilde{\lambda} \cdot \tilde{a}] \). This proves the nontrivial part of the statement in the theorem concerning \(C^* \)-algebras.

The statement concerning von Neumann algebras follows immediately from Lemma 2.2: if \(\tilde{b} \notin \overline{\tilde{a}} \), then there exists a projection \(q \in M_n(\mathcal{C}) \) such that \(q\tilde{a} = 0 \) and \(q\tilde{b} \neq 0 \); hence, for some row \(\tilde{\lambda} \) of \(q \) we have \(\tilde{\lambda} \cdot \tilde{a} = 0 \) and \(\tilde{\lambda} \cdot \tilde{b} \neq 0 \). \(\square \)

The following result is an obvious consequence of Theorem 2.1.

Corollary 2.3. Let \(\mathcal{A} \) be a \(C^* \)-algebra and \(\mathcal{B}(\mathcal{A}) \) the algebra of all bounded linear operators on \(\mathcal{A} \). Then the closure in the strong operator topology (= point-norm topology) of the algebra \(\mathcal{C} \) of all elementary operators on \(\mathcal{A} \) (as a subset of \(\mathcal{B}(\mathcal{A}) \)) consists precisely of operators \(\varphi \in \mathcal{B}(\mathcal{A}) \) that satisfy \(\varphi(\mathcal{K}) \subseteq \mathcal{K} \) for each closed ideal \(\mathcal{K} \) in \(\mathcal{A} \).

If \(\mathcal{A} \) is a von Neumann algebra, then \(\mathcal{C} \) is a dense subset of the space of all bounded module endomorphisms of \(\mathcal{A} \) over the centre \(\mathcal{C} \) equipped with the point-weak operator topology. (Here the point-weak operator topology on \(\mathcal{B}(\mathcal{A}) \) is defined by the family of seminorms \(\psi \rightarrow \|\varphi(a) \xi, \eta\| \), where \(\xi \) and \(\eta \) are arbitrary vectors from the Hilbert space on which \(\mathcal{A} \) is acting.)

An operator \(\varphi \in \mathcal{B}(\mathcal{A}) \) is called a local elementary operator if for each \(x \in \mathcal{A} \) there exists an elementary operator \(E \) (depending on \(x \)) such that

\[
\text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use}
\]
Larson and Sourour observed in [5] that for each infinite-dimensional Banach space \(\mathcal{X} \) there exist on \(\mathcal{B}(\mathcal{X}) \) nonelementary local elementary operators. Corollary 2.3 implies that on \(C^* \)-algebras local elementary operators can be strongly approximated by elementary operators.

To study the range inclusion problem for elementary operators, we shall need a sharper form of Proposition 1.1 for factors, but to prove it, we need a lemma.

Lemma 2.4. Let \(\mathcal{A} \) be a unital prime \(C^* \)-algebra (or, more generally, a unital complex ultraprime Banach algebra in the sense [9]), \(\mathcal{E} \) the algebra of all elementary operators on \(\mathcal{A} \), \(\mathcal{S} \) a finite-dimensional subspace of \(\mathcal{A} \), and \(b \in \mathcal{A} \setminus \mathcal{S} \). Then there exists \(E \in \mathcal{E} \) such that \(E \mathcal{S} = 0 \) and \(Eb \neq 0 \).

Proof. The proof is by induction on the dimension \(n \) of \(\mathcal{S} \). First assume that \(n = 1 \), and choose a nonzero element \(a \in \mathcal{S} \). If for each \(E \in \mathcal{E} \) the condition \(Ea = 0 \) implies \(Eb = 0 \), then the correspondence \(Ea \rightarrow Eb \) is a well-defined \(\mathcal{A} \)-bimodule homomorphism from the ideal \(\mathcal{E}a \) to \(\mathcal{A} \), which maps \(a \) to \(b \). By [7, Proposition 2.5] (or, if \(\mathcal{A} \) is a general ultraprime Banach algebra, by [9, Theorem 4.1]) each such homomorphism is necessarily a multiplication by certain \(\gamma \in C \). Hence we have \(b = \gamma a \); but this is in contradiction with \(b \notin \mathcal{S} \). Hence there exists an \(E \in \mathcal{E} \) such that \(E \mathcal{S} = 0 \) and \(Eb \neq 0 \).

Now let \(n \) be any positive integer, assume inductively that the lemma holds for all subspaces of dimension at most \(n \), and let \(\mathcal{S} \) be an arbitrary \((n + 1)\)-dimensional subspace of \(\mathcal{A} \). Choose a basis \(\{a_1, \ldots, a_n, a\} \) for \(\mathcal{S} \) and denote by \(\mathcal{T} \) the span of \(\{a_1, \ldots, a_n\} \). By the inductive hypothesis there exists \(F \in \mathcal{E} \) such that \(F \mathcal{T} = 0 \) and \(Fb \neq 0 \). If \(Fb \notin \mathcal{C}Fa \), then (by the already proved case \(n = 1 \)) there exists \(G \in \mathcal{E} \) such that \(GFa = 0 \) and \(GFb \neq 0 \); hence, \(E \equiv GF \) satisfies \(E \mathcal{S} = 0 \) and \(Eb \neq 0 \). Thus we may assume that \(Fb = \alpha Fa \) for some \(\alpha \in C \). Put \(c = b - \alpha a \) and note that \(Fc = 0 \). Then \(c \notin \mathcal{T} \) (since \(b \notin \mathcal{T} \)). Hence by the inductive hypothesis there exists \(H \in \mathcal{E} \) such that \(H \mathcal{T} = 0 \) and \(Hc \neq 0 \). Since \(\mathcal{A} \) is a prime algebra and \(Fa \neq 0 \), \(Hc \neq 0 \), there exists \(d \in \mathcal{A} \) such that \(F(a)dH(c)
eq 0 \). Finally, let \(E \in \mathcal{E} \) be defined by

\[
E = -F(x)dH(a) + F(a)dH(x) \quad (x \in \mathcal{A}).
\]

Then \(Ea = 0 \), \(E \mathcal{T} = 0 \) (since \(F \mathcal{T} = 0 \) and \(H \mathcal{T} = 0 \)), and

\[
Eb = E(c + \alpha a) = Ec = -F(c)dH(a) + F(a)dH(c) = F(a)dH(c) \neq 0. \quad \Box
\]

In the proof of our last two results we shall also use the following observation: if \(f_k \ (k = 1, 2, \ldots) \) is an increasing sequence of projections in a factor \(\mathcal{A} \) and \(e \in \mathcal{A} \) is a projection such that \(f_k \ll e \) for each \(k \), then \(f \ll e \), where \(f = \sqrt{\sum_{k=1}^{\infty} f_k} \). If all projections \(f_k \) are finite, this follows from [12, Lemma 2.2, p. 310]. If some \(f_k \) is infinite, then the observation follows from the fact that any two infinite cyclic projections in a factor are equivalent [4, p. 414], by noting that the cardinal number of cyclic summands in \(f \) is less than or equal to the cardinal number of cyclic summands in \(e \) (since \(f = f_1 + \sum_{k=1}^{\infty} (f_{k+1} - f_k) \) and \(f_{k+1} - f_k \ll e \), \(f_1 \ll e \)).

Proposition 2.5. Let \(\mathcal{A} \) be a von Neumann factor, \(\mathcal{H} \) a closed ideal in \(\mathcal{A} \), and \(a_1, \ldots, a_n \) elements of \(\mathcal{A} \) linearly independent modulo \(\mathcal{H} \). Then there exist ideals \(\mathcal{I}_j \ (j = 1, \ldots, n) \) in \(\mathcal{A} \) such that \(\mathcal{I}_j \supset \mathcal{H} \) for each \(j \) (where the
symbol \supset is used in the strict sense; that is, $\mathcal{J}_j \neq \mathcal{H}$) and

\[(3)\quad \mathcal{E} \bar{a} \supseteq \bigoplus_{j=1}^{n} \mathcal{J}_j,
\]

where $\bar{a} = (a_1, \ldots, a_n)$.

Proof. The proof is again by an induction on n. In the case $n = 1$ it suffices to prove that the ideal $\langle a_1 \rangle$ generated by a_1 contains \mathcal{H}. Since $a_1 \notin \mathcal{H}$, we see (using the polar decomposition of a_1 and the spectral theorem) that the spectral projection e of $|a_1|$ corresponding to a certain positive interval satisfies $e \notin \mathcal{H}$ and $e \in \langle a_1 \rangle$. Hence it suffices to prove that $\mathcal{H} \subseteq \langle e \rangle$. For this, it suffices to show that $b \in \langle e \rangle$ for each positive b in \mathcal{H}. For each $k = 1, 2, \ldots$, let f_k be the spectral projection of b corresponding to the interval $[1/k, \|b\|]$. Then $f \equiv \bigwedge_{k=1}^{\infty} f_k$ is the range projection of b; hence, $b = fb$. From $f_k \in \mathcal{H}$, $e \notin \mathcal{H}$, and the fact that any two projections in a factor are comparable [4, p. 408], it follows that $f_k \prec e$ for each k; hence, $f \preceq e$. This implies that $f \in \langle e \rangle$; therefore, we have $b = fb \in \langle e \rangle$.

Now let $n > 1$. If we can prove that there exists an $E \in \mathcal{E}$ such that

\[(4)\quad Ea_j = 0 \text{ for } j = 1, \ldots, n-1\quad \text{and} \quad Ea_n \notin \mathcal{H},
\]

then by a previous paragraph (applied to Ea_n) we have

\[\mathcal{E} \bar{a} \supseteq \mathcal{E}(0, \ldots, 0, Ea_n) = 0 \oplus \cdots \oplus 0 \oplus \langle Ea_n \rangle \supseteq 0 \oplus \cdots \oplus 0 \oplus \mathcal{H},
\]

and by applying the same arguments also to other components, the proposition follows. To prove (4), assume, to the contrary, that the condition $Ea_j = 0$ for $j = 1, \ldots, n-1$ implies that $Ea_n \in \mathcal{H}$. Then the map

\[\varphi: \mathcal{E}(a_1, \ldots, a_{n-1}) \to \mathcal{A}/\mathcal{H},
\]

\[\varphi(Ea_1, \ldots, Ea_{n-1}) \equiv Ea_n + \mathcal{H} \quad (E \in \mathcal{E})
\]

is a well-defined homomorphism of \mathcal{E}-modules. By the inductive hypothesis we have $\mathcal{E}(a_1, \ldots, a_{n-1}) \supseteq \mathcal{H}^{n-1}$. The components φ_j of the restriction of φ to \mathcal{H}^{n-1} are \mathcal{E}-module homomorphisms from \mathcal{H} to \mathcal{A}/\mathcal{H}; hence, $\varphi_j = 0$ for each $j = 1, \ldots, n-1$ (since $\varphi_j(\mathcal{H}) = \varphi_j(\mathcal{H}) = \mathcal{H} \varphi_j(\mathcal{H}) = 0$ in \mathcal{A}/\mathcal{H}). It follows that $\varphi(\mathcal{H}^{n-1}) = 0$; hence, φ induces an \mathcal{E}-module homomorphism $\tilde{\varphi}: \mathcal{E}(a_1, \ldots, a_{n-1})/\mathcal{H}^{n-1} \to \mathcal{A}/\mathcal{H}$. Identifying in the obvious way $\mathcal{E}(a_1, \ldots, a_{n-1})/\mathcal{H}^{n-1}$ with $\tilde{\mathcal{E}}(a_1 + \mathcal{H}, \ldots, a_{n-1} + \mathcal{H})$, where $\tilde{\mathcal{E}}$ denotes the algebra of all elementary operators on \mathcal{A}/\mathcal{H}, we can regard $\tilde{\varphi}$ as an $\tilde{\mathcal{E}}$-module homomorphism from $\tilde{\mathcal{E}}(a_1 + \mathcal{H}, \ldots, a_{n-1} + \mathcal{H})$ to \mathcal{A}/\mathcal{H} such that $\tilde{\varphi}(E(a_1 + \mathcal{H}), \ldots, E(a_{n-1} + \mathcal{H})) = \tilde{E}(a_n + \mathcal{H}) \ (E \in \tilde{\mathcal{E}})$. In particular, for any fixed $\tilde{E} \in \tilde{\mathcal{E}}$ we have $\tilde{E}(a_n + \mathcal{H}) = 0$ if $\tilde{E}(a_j + \mathcal{H}) = 0$ for all $j = 1, \ldots, n-1$. Hence by Lemma 2.4 $a_n + \mathcal{H}$ must be contained in the subspace of \mathcal{A}/\mathcal{H} spanned by $\{a_j + \mathcal{H}: j = 1, \ldots, n-1\}$, but this is in contradiction with the assumed linear independence modulo \mathcal{H} of elements a_j ($j = 1, \ldots, n$). (Here we have used the fact that \mathcal{A}/\mathcal{H} is a prime C^*-algebra, since the closed ideals in a factor are linearly ordered by inclusion [4, p. 451].) □
Proposition 2.5 can be useful in studying the question of when the range of a fixed elementary operator is contained in a given (not necessarily closed) ideal \(\mathcal{I} \) of \(\mathcal{A} \). In the special case \(\mathcal{I} = 0 \), Mathieu \([7, 9]\) solved the problem for general prime \(\mathcal{C}^* \)-algebras and ultraprime Banach algebras. In the case \(\mathcal{A} = \mathcal{B}(\mathcal{H}) \) the question was studied in \([3, 1, 2, 6]\); in particular, the case \(\mathcal{A} = \mathcal{B}(\mathcal{H}) \) of the following corollary was proved by Apostol and Fialkow \([1, \text{Theorem 3.1}]\).

Corollary 2.6. Let \(\mathcal{I} \) be a (not necessarily closed) ideal in a factor \(\mathcal{A} \), and let \(E \) be an elementary operator on \(\mathcal{A} \) defined by

\[
E_x = \sum_{j=1}^{n} a_j x b_j \quad (x \in \mathcal{A}),
\]

where \(\tilde{a} = (a_1, \ldots, a_n) \) and \(\tilde{b} = (b_1, \ldots, b_n) \) are fixed elements in \(\mathcal{A}^n \). If \(E(\mathcal{A}) \subseteq \mathcal{I} \) and \(a_1, \ldots, a_n \) are linearly independent modulo the norm closure \(\overline{\mathcal{I}} \) of \(\mathcal{I} \) then each \(b_j \) (\(j = 1, \ldots, n \)) must be in \(\mathcal{I} \).

Proof. We shall prove that \(b_1 \in \mathcal{I} \); the proof that \(b_j \in \mathcal{I} \) for \(j > 1 \) is the same. By Proposition 2.5 there exists an elementary operator \(F \), say

\[
F_x = \sum_{i=1}^{m} u_i x v_i \quad (x \in \mathcal{A}),
\]

where \(u_j, v_j \in \mathcal{A} \) are fixed, such that

\[
F_a_j = 0 \quad \text{for} \quad j = 2, \ldots, n \quad \text{and} \quad F a_1 \notin \overline{\mathcal{I}}.
\]

Since by hypothesis \(E(\mathcal{A}) \subseteq \mathcal{I} \) and \(\mathcal{I} \) is an ideal, we have \(\sum_{i=1}^{m} u_i E(v_i x) \in \mathcal{I} \) for all \(x \in \mathcal{A} \), which can be written as

\[
\sum_{i=1}^{m} u_i \sum_{j=1}^{n} a_j v_i x b_j \in \mathcal{I} \quad (x \in \mathcal{A}).
\]

Reversing the order of summation and using (5) we obtain that \((F a_1) x b_1 \in \mathcal{I} \) for all \(x \in \mathcal{A} \). Denoting \(F a_1 \) by \(a \) and \(b_1 \) by \(b \), we now have

\[
a \mathcal{A} b \subseteq \mathcal{I} \quad \text{and} \quad a \notin \overline{\mathcal{I}},
\]

and we must prove that this implies that \(b \in \mathcal{I} \).

Using the polar decomposition of \(a \) and \(b^* \) and the spectral theorem for \(|a| = \sqrt{a^* a} \) it follows from (6) by classical arguments (see \([4, \S 6.8]\)) that for some spectral projection \(e \) of \(|a| \) we have

\[
e \mathcal{A} |b^*| \subseteq \mathcal{I} \quad \text{and} \quad e \notin \overline{\mathcal{I}}.
\]

For each \(k = 1, 2, \ldots \) let \(f_k \) be the spectral projection of \(|b^*| \) corresponding to \((1/k, \infty) \). Since any two projections in a factor are comparable \([4, \text{p. 408}]\), there are now two cases: (i) \(e \leq f_k \) for some positive integer \(k \); (ii) \(f_k \prec e \) for each \(k \); but, from \(e \mathcal{A} |b^*| \subseteq \mathcal{I} \) we have \(e \mathcal{A} f_k \subseteq \mathcal{I} \) for each \(k \). Hence in the first case it follows that \(e \in \mathcal{I} \) (since \(e = e u f_k u^* \in \mathcal{I} u^* \subseteq \mathcal{I} \), where \(u \in \mathcal{A} \) is a partial isometry with initial projection contained in \(f_k \) and final projection \(e \)), which is in contradiction with \(e \notin \overline{\mathcal{I}} \). Thus, only case (ii) occurs. Since
for all k, the range projection $f = \bigvee_{k=1}^{\infty} f_k$ of $|b^*|$ satisfies $f \preceq e$. Denoting by v a partial isometry with initial projection f and final projection contained in e, we have $|b^*| = f|b^*| = v^*ev|b^*| \in \mathcal{S}$ (since $e \mathcal{S} |b^*| \subseteq \mathcal{S}$). Hence $b \in \mathcal{S}$ by polar decomposition.

References

Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 61000, Slovenia

E-mail address: Bojan.Magajna@uni-lj.si