A transitivity theorem for algebras of elementary operators

Author:
Bojan Magajna

Journal:
Proc. Amer. Math. Soc. **118** (1993), 119-127

MSC:
Primary 46L05; Secondary 47B48, 47D25

MathSciNet review:
1158004

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a -algebra and the algebra of all elementary operators on , and let . It is proved that is contained in the closure of the set if and only if each complex linear combination is contained in the closed two-sided ideal generated by . In particular, a bounded linear operator on preserves all closed two-sided ideals if and only if it is in the strong closure of .

**[1]**Constantin Apostol and Lawrence Fialkow,*Structural properties of elementary operators*, Canad. J. Math.**38**(1986), no. 6, 1485–1524. MR**873420**, 10.4153/CJM-1986-072-6**[2]**Lawrence A. Fialkow,*The range inclusion problem for elementary operators*, Michigan Math. J.**34**(1987), no. 3, 451–459. MR**911817**, 10.1307/mmj/1029003624**[3]**C. K. Fong and A. R. Sourour,*On the operator identity ∑𝐴_{𝑘}𝑋𝐵_{𝑘}≡0*, Canad. J. Math.**31**(1979), no. 4, 845–857. MR**540912**, 10.4153/CJM-1979-080-x**[4]**Richard V. Kadison and John R. Ringrose,*Fundamentals of the theory of operator algebras. Vol. I*, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR**719020****[5]**David R. Larson and Ahmed R. Sourour,*Local derivations and local automorphisms of ℬ(𝒳)*, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR**1077437**, 10.1090/pspum/051.2/1077437**[6]**Bojan Magajna,*A system of operator equations*, Canad. Math. Bull.**30**(1987), no. 2, 200–209. MR**889539**, 10.4153/CMB-1987-029-2**[7]**Martin Mathieu,*Elementary operators on prime 𝐶*-algebras. I*, Math. Ann.**284**(1989), no. 2, 223–244. MR**1000108**, 10.1007/BF01442873**[8]**-,*Applications of ultraprime Banach algebras in the theory of elementary operators*, Thesis, Tübingen, 1986.**[9]**Martin Mathieu,*Rings of quotients of ultraprime Banach algebras, with applications to elementary operators*, Conference on Automatic Continuity and Banach Algebras (Canberra, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 21, Austral. Nat. Univ., Canberra, 1989, pp. 297–317. MR**1022011****[10]**Gerard J. Murphy,*𝐶*-algebras and operator theory*, Academic Press, Inc., Boston, MA, 1990. MR**1074574****[11]**Richard S. Pierce,*Associative algebras*, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York-Berlin, 1982. Studies in the History of Modern Science, 9. MR**674652****[12]**Masamichi Takesaki,*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05,
47B48,
47D25

Retrieve articles in all journals with MSC: 46L05, 47B48, 47D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1158004-6

Keywords:
Elementary operators,
-algebra,
von Neumann algebra

Article copyright:
© Copyright 1993
American Mathematical Society