Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On compositions of conformal immersions

Authors: Marcos Dajczer and Enaldo Vergasta
Journal: Proc. Amer. Math. Soc. 118 (1993), 211-215
MSC: Primary 53C42; Secondary 53A30
MathSciNet review: 1164141
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider conformal immersions of a manifold $ {M^n},\;n \geqslant 6$, into conformally flat manifolds. If the principal curvatures of $ f:{M^n} \to N_{cf}^{n + 1}$ have multiplicities at most $ n - 4$, we show that any $ g:{M^n} \to \tilde N_{cf}^{n + 2}$ can locally be written as $ g = \rho \circ f$, where $ \rho :N_{cf}^{n + 1} \to \tilde N_{cf}^{n + 2}$ is a conformal immersion.

References [Enhancements On Off] (What's this?)

  • [Ca] E. Cartan, La déformation des hypersurfaces dans l'espace conforme réel a $ n \geqslant 5$ dimensions, Bull. Soc. Math. France 45 (1917), 57-121. MR 1504762
  • [dCD] M. do Carmo and M. Dajczer, Conformal rigidity, Amer. J. Math. 109 (1987), 963-985. MR 910359 (89e:53016)
  • [CY] B. Y. Chen and K. Yano, Umbilical submanifolds with respect to a nonparallel normal direction, J. Differential Geom. 8 (1973), 589-597. MR 0341347 (49:6098)
  • [dCDM] M. do Carmo, M. Dajczer, and F. Mercuri, Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc. 288 (1985), 189-203. MR 773056 (86b:53052)
  • [Da] M. Dajczer et al., Submanifolds and isometric immersions, Math. Lecture Series, vol. 13, Publish or Perish, Houston, TX, 1990. MR 1075013 (92i:53049)
  • [DG] M. Dajczer and D. Gromoll, Isometric deformations of compact Euclidean submanifolds in codimension $ 2$, Duke Math. J. (to appear). MR 1355178 (96h:53069)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 53A30

Retrieve articles in all journals with MSC: 53C42, 53A30

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society