Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On the homology of Postnikov fibres

Authors: Y. Félix and J. C. Thomas
Journal: Proc. Amer. Math. Soc. 118 (1993), 255-258
MSC: Primary 55S45; Secondary 55S35, 57T05
MathSciNet review: 1165053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field of positive characteristic and $ X$ be a simply connected space of the homotopy type of a finite type CW complex. The Postnikov fibre $ {X_{[n]}}$ of $ X$ is defined as the homotopy fibre of the $ n$-equivalence $ {f_n}:X \to {X_n}$ coming from the Postnikov tower $ \{ {X_n}\} $ of $ X$. We prove that if the Lusternik-Schnirelmann category of $ X$ is finite, then $ {H_{\ast}}({X_{[n]}};k)$ contains a free module on a subalgebra $ K$ of $ {H_{\ast}}(\Omega {X_n};k)$ such that $ {H_{\ast}}(\Omega {X_n};k)$ is a finite-dimensional free $ K$-module.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S45, 55S35, 57T05

Retrieve articles in all journals with MSC: 55S45, 55S35, 57T05

Additional Information

PII: S 0002-9939(1993)1165053-0
Keywords: Eilenberg-Mac Lane spaces, Postnikov tower, grade of a module, Lusternik-Schnirelmann category of a space
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia