Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the homology of Postnikov fibres


Authors: Y. Félix and J. C. Thomas
Journal: Proc. Amer. Math. Soc. 118 (1993), 255-258
MSC: Primary 55S45; Secondary 55S35, 57T05
DOI: https://doi.org/10.1090/S0002-9939-1993-1165053-0
MathSciNet review: 1165053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field of positive characteristic and $ X$ be a simply connected space of the homotopy type of a finite type CW complex. The Postnikov fibre $ {X_{[n]}}$ of $ X$ is defined as the homotopy fibre of the $ n$-equivalence $ {f_n}:X \to {X_n}$ coming from the Postnikov tower $ \{ {X_n}\} $ of $ X$. We prove that if the Lusternik-Schnirelmann category of $ X$ is finite, then $ {H_{\ast}}({X_{[n]}};k)$ contains a free module on a subalgebra $ K$ of $ {H_{\ast}}(\Omega {X_n};k)$ such that $ {H_{\ast}}(\Omega {X_n};k)$ is a finite-dimensional free $ K$-module.


References [Enhancements On Off] (What's this?)

  • [1] I. Bernstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1962), 265-279. MR 0139168 (25:2604)
  • [2] Y. Félix, S. Halperin, and J. C. Thomas, Hopf algebras of polynomial growth, J. Algebra 125 (1989), 408-417. MR 1018954 (90j:16021)
  • [3] -, The category of a map and the grade of a module, Israel J. Math. (to appear). MR 1194965 (94e:55021)
  • [4] -, Lie algebras of polynomial growth, J. London Math. Soc. 43 (1991), 556-566. MR 1113393 (92i:57034)
  • [5] -, Elliptic Hopf algebras, J. London Math. Soc. 43 (1991), 545-555. MR 1113392 (92i:57033)
  • [6] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR 0174052 (30:4259)
  • [7] J. C. Moore and L. Smith, Hopf algebras and multiplicative fibrations. I, Amer. J. Math. 90 (1968), 752-780. MR 0234455 (38:2772)
  • [8] G. Whitehead, Elements of homotopy theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S45, 55S35, 57T05

Retrieve articles in all journals with MSC: 55S45, 55S35, 57T05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1165053-0
Keywords: Eilenberg-Mac Lane spaces, Postnikov tower, grade of a module, Lusternik-Schnirelmann category of a space
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society