Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Note on the integrability of superharmonic functions

Author: Noriaki Suzuki
Journal: Proc. Amer. Math. Soc. 118 (1993), 415-417
MSC: Primary 31B05
MathSciNet review: 1126201
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be a domain in $ {{\mathbf{R}}^n}$ and let $ {S^ + }(D)$ be the set of all nonnegative superharmonic functions on $ D$. It is shown that if $ {S^ + }(D) \subset {L^p}(D)$ with some $ p > 0$, then for each $ {x_0} \in D$ there is a constant $ C = C(D,p,{x_0}) > 0$ such that the inequality

$\displaystyle \int_D {u{{(x)}^p}dx \leqslant Cu{{({x_0})}^p}} $

holds for all $ u \in {S^ + }(D)$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B05

Retrieve articles in all journals with MSC: 31B05

Additional Information

PII: S 0002-9939(1993)1126201-1
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia