A matrix solution to the inverse Perron-Frobenius problem

Authors:
P. Góra and A. Boyarsky

Journal:
Proc. Amer. Math. Soc. **118** (1993), 409-414

MSC:
Primary 58F11; Secondary 28D05

DOI:
https://doi.org/10.1090/S0002-9939-1993-1129877-8

MathSciNet review:
1129877

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a probability density function on the unit interval . The inverse Perron-Frobenius problem involves determining a transformation such that the one-dimensional dynamical system has as its unique invariant density function. A matrix method is developed that provides a simple relationship between and , where is any piecewise constant density function. The result is useful for modelling and predicting chaotic data.

**[1]**N. Friedman and A. Boyarsky,*Construction of ergodic transformations*, Adv. in Math.**45**(1982), 213-254. MR**673802 (84f:28013)****[2]**S. H. Ershov and G. G. Malinetskiĭ,*The solution of the inverse problem for the Perron-Frobenius equation*, U.S.S.R. Comput. Math. and Math. Phys.**28**(1988), 136-141. MR**973203 (90d:58074)****[3]**A. Boyarsky and G. Haddad,*All absolutely continuous invariant measures of piecewise linear Markov maps are piecewise constant*, Adv. in Appl. Math.**2**(1981), 284-289. MR**626863 (82i:58041)****[4]**M. Casdagli,*Nonlinear prediction of chaotic time series*, Phys. D**35**(1989), 335-356. MR**1004201 (90e:58100)****[5]**S. Pelikan,*Invariant densities for random maps of the interval*, Trans. Amer. Math. Soc.**281**(1984), 813-825. MR**722776 (85i:58070)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F11,
28D05

Retrieve articles in all journals with MSC: 58F11, 28D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1129877-8

Article copyright:
© Copyright 1993
American Mathematical Society