A RESULT ON MULTIDIMENSIONAL QUANTIZATION

ERIC B. HALL AND GARY L. WISE

(Communicated by George C. Papanicolaou)

ABSTRACT. For any integer $N > 1$, a probability space, a Gaussian random vector X defined on the space with a positive definite covariance matrix, and an N-level quantizer Q are presented such that the random vector $Q(X)$ takes on each of the N values in its range with equal probability and such that X and $Q(X)$ are independent.

INTRODUCTION

Quantization, the process by which a set is mapped into a finite subset of a given cardinality, plays a pivotal role in virtually any application that requires analog to digital conversion; indeed, it is at the heart of much of modern digital technology. In such applications, a quantizer is often taken to be a function mapping \mathbb{R}^k into a subset of \mathbb{R}^k of cardinality N, where k is a positive integer and N is an integer greater than one (see, e.g., [1, 5, 3, 6, 2, 7, 9]). In this paper we present what might be a surprising consequence of such a general approach to quantization.

DEVELOPMENT

For a topological space T, we will let $\mathcal{B}(T)$ denote the family of Borel subsets of T. For a set S, we will let $\mathcal{P}(S)$ denote the power set of S and I_S denote the indicator function of S. By a standard Gaussian measure we will mean a Gaussian measure whose first moment is zero and whose second moment is one. Let k be a positive integer. For any measure m on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ we will let m_* denote the inner measure on $(\mathbb{R}^k, \mathcal{P}(\mathbb{R}^k))$ induced by m and we will let m^* denote the outer measure on $(\mathbb{R}^k, \mathcal{P}(\mathbb{R}^k))$ induced by m. Recall from [4, p. 61] that if $B \in \mathcal{B}(\mathbb{R}^k)$ and $A \in \mathcal{P}(\mathbb{R}^k)$, then $m_*(B \cap A) + m^*(B \cap A^c) = m(B)$. We will let λ denote Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and Λ denote Lebesgue measure on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ for integers $k > 1$, where k will be determined from the context. Recall that for a measure space

Received by the editors April 20, 1991 and, in revised form, September 17, 1991; a preliminary version of this paper was presented at the 863rd meeting of the American Mathematical Society.

1991 Mathematics Subject Classification. Primary 60A10; Secondary 62H12.

Key words and phrases. Multidimensional quantization, saturated nonmeasurable sets.

The first author was supported by the University Research Council of Southern Methodist University. The second author was supported by the Office of Naval Research under Grant N00014-90-J-1712.

©1993 American Mathematical Society

0002-9939/93 $1.00 + .25 per page
(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k), m)$, a subset S of \mathbb{R}^k is said to be a saturated non-m-measurable set if $m_*(S) = m_*(S^c) = 0$. Finally, a k-dimensional quantizer of a random variable X defined on a probability space (Ω, \mathcal{F}, P) is any function $Q: \mathbb{R}^k \to F$ such that F is a finite subset of \mathbb{R}^k, such that $Q(x) = x$ for all x in F (i.e., such that Q restricted to F is the identity map on F) and such that $Q(X)$ is itself a random variable defined on (Ω, \mathcal{F}, P). If F is a finite subset of \mathbb{R}^k with cardinality N then a quantizer $Q: \mathbb{R}^k \to F$ of a random variable X is said to be an N-level quantizer.

The following lemma is proved in [8, pp. 381–382].

Lemma 1. For any positive integer M there exist M disjoint subsets Z_1, Z_2, \ldots, Z_M of the real line such that Z_1, Z_2, \ldots, Z_M and $Z = Z_1 \cup \cdots \cup Z_M$ are saturated non-λ-measurable sets.

The next result is an immediate consequence of Lemma 1.

Corollary 1. For any integer $N > 1$ there exist N subsets T_1, T_2, \ldots, T_N of the real line that partition the real line and are such that for each positive integer $j \leq N$, T_j is a saturated non-λ-measurable set.

For our purposes the following corollary will prove useful.

Corollary 2. For any positive integer k and any integer $N > 1$, there exist N subsets S_1, S_2, \ldots, S_N of \mathbb{R}^k that partition \mathbb{R}^k and are such that, for each positive integer $j \leq N$, S_j is a saturated non-Λ-measurable set.

Proof. For $k = 1$, the result follows from Corollary 1. Assume $k > 1$. Let T_1, \ldots, T_N be a partition of the real line as given by Corollary 1. For positive integers $j \leq N$, let $S_j = T_j \times \mathbb{R} \times \cdots \times \mathbb{R} \subset \mathbb{R}^k$. Fix a positive integer $j \leq N$ and assume that there exists an \mathcal{F} subset B of \mathbb{R}^k such that $B \subset S_j$ and $\Lambda(B) > 0$. Define a subset \hat{B} of \mathbb{R} as follows:

\[
\hat{B} = \{b_1 \in \mathbb{R} : (b_1, b_2, \ldots, b_k) \in B \text{ for some } (b_2, \ldots, b_k) \in \mathbb{R}^{k-1}\}.
\]

Note that $\hat{B} \in \mathcal{B}(\mathbb{R})$. Further, notice that $\lambda(\hat{B}) > 0$ since $B \subset \hat{B} \times \mathbb{R} \times \cdots \times \mathbb{R} \subset \mathbb{R}^k$ and $\Lambda(B) > 0$. But, $\lambda(\hat{B}) = 0$ since $\hat{B} \subset T_j$ and $\Lambda(T_j) = 0$. This contradiction implies that $\Lambda(B) = 0$ and hence that $\Lambda_*(S_j) = 0$. It follows similarly that $\Lambda_*(S_j^c) = 0$ also. Q.E.D.

Lemma 2. For a positive integer k and an integer $N > 1$, let S_1, S_2, \ldots, S_N comprise a partition of \mathbb{R}^k such that for each positive integer $j \leq N$, S_j is a saturated non-Λ-measurable set. The set

\[
\mathcal{F} = \{(S_1 \cap A_1) \cup \cdots \cup (S_N \cap A_N) : A_i \in \mathcal{B}(\mathbb{R}^k) \text{ for } 1 \leq i \leq N\}
\]

is a σ-algebra on \mathbb{R}^k.

Proof. Choosing $A_1 = \cdots = A_N = \emptyset$ implies that $\emptyset \in \mathcal{F}$. Let A be an element of \mathcal{F}. Then $A = (S_1 \cap A_1) \cup \cdots \cup (S_N \cap A_N)$ for some choice of the A_i's from $\mathcal{B}(\mathbb{R}^k)$. Further, $A^c = (S_1 \cap A_1)^c \cap \cdots \cap (S_N \cap A_N)^c$. Since

\[
S_i^c = \bigcup_{j=1 \atop j \neq i}^N S_j,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
it follows that
\[A^c = \bigcap_{i=1}^{N} \bigcup_{j=1 \atop i \neq j}^{N} S_j \cup A_i^c. \]

Hence \(A^c \) is a finite union of sets, each of which is of one of the following three forms:

(i) \(S_{n_1} \cap \cdots \cap S_{n_k} \cap B \) where \(1 \leq n_1 < \cdots < n_k \leq N \), \(k > 1 \), and \(B \in \mathcal{B}(R^k) \);

(ii) \(S_j \cap B \) for \(1 \leq j \leq N \) and \(B \in \mathcal{B}(R^k) \);

(iii) \(B \in \mathcal{B}(R^k) \).

Every set of the form given by (i) is empty since the \(S_i \)'s are disjoint. Further, any set \(B \in \mathcal{B}(R^k) \) may be expressed as \(B = (S_1 \cap B) \cup \cdots \cup (S_N \cap B) \). Hence, \(A^c \) is an element of \(\mathcal{F} \).

Finally, if \(B_1, B_2, \ldots \) are in \(\mathcal{F} \), then for some choice of the \(A_i,j \)'s from \(\mathcal{B}(R^k) \),
\[
\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{N} (S_j \cap A_{i,j}) = \bigcap_{j=1}^{N} \left(\bigcup_{i=1}^{\infty} A_{i,j} \right) \in \mathcal{F}. \quad \text{Q.E.D.}
\]

Recall that two measures \(P_1 \) and \(P_2 \) on a given measurable space \((\Omega, \mathcal{F})\) are said to be equivalent if \(\{A \in \mathcal{F} : P_1(A) = 0\} = \{A \in \mathcal{F} : P_2(A) = 0\} \). Notice that for sets \(S_1, S_2, \ldots, S_N \) as above, it follows that, for any positive integer \(i \leq N \) and any \(\mathcal{B}(R^k) \)-measurable set \(H \), \(P_\ast(S_i \cap H) = 0 \), \(P_\ast(S_i^c \cap H) = 0 \), \(P_\ast(S_i \cap H) = P(H) \), and \(P_\ast(S_i^c \cap H) = P(H) \) for any probability measure \(P \) on \((R^k, \mathcal{B}(R^k))\) that is equivalent to Lebesgue measure on \((R^k, \mathcal{B}(R^k))\). The following lemma will be used in the proof of a subsequent theorem.

Lemma 3. For a positive integer \(k \) and an integer \(N > 1 \), let \(S_1, S_2, \ldots, S_N \) comprise a partition of \(R^k \) such that for each positive integer \(j \leq N \), \(S_j \) is a saturated non-\(\Lambda \)-measurable set. Let \(P \) be a probability measure on \((R^k, \mathcal{B}(R^k))\) that is equivalent to Lebesgue measure on \((R^k, \mathcal{B}(R^k))\). Let \(A_1, \ldots, A_N \) and \(B_1, \ldots, B_N \) be sets from \(\mathcal{B}(R^k) \) such that
\[
(S_1 \cap A_1) \cup \cdots \cup (S_N \cap A_N) = (S_1 \cap B_1) \cup \cdots \cup (S_N \cap B_N).
\]

Then \(P(A_i \Delta B_i) = 0 \) for any positive integer \(i \leq N \) where for any two subsets \(A \) and \(B \) of \(R^k \), \(A \Delta B \) denotes the symmetric difference of \(A \) and \(B \).

Proof. Fix a positive integer \(i \leq N \). By assumption,
\[
(S_1 \cap A_1) \cup \cdots \cup (S_N \cap A_N) = (S_1 \cap B_1) \cup \cdots \cup (S_N \cap B_N).
\]

Intersecting each side with \(S_i \) implies that \((S_i \cap A_i) = (S_i \cap B_i) \), which implies that \((S_i \cap A_i) \cap (S_i \cap B_i)^c = (S_i \cap A_i) \cap (S_i \cap B_i)^c = (S_i \cap A_i) \cup (S_i \cap A_i) = (S_i \cap A_i) \cap (S_i \cap B_i)^c \). Thus, we see that \((S_i \cap A_i) \cap (S_i \cap B_i)^c \cup (S_i \cap B_i) \cap (S_i \cap A_i)^c = (S_i \cap A_i) \cap (S_i \cap B_i) = 0 \). Since \((A_i \Delta B_i) \in \mathcal{B}(R^k) \), it follows that \(P(A_i \Delta B_i) = P^\ast(S_i \cap (A_i \Delta B_i)) = P^\ast(0) = 0 \). \quad \text{Q.E.D.}

The following theorem provides a probability space upon which the principal result of this paper will be based.

Theorem 1. For a positive integer \(k \) and an integer \(N > 1 \), let \(S_1, S_2, \ldots, S_N \) comprise a partition of \(R^k \) such that for each positive integer \(j \leq N \), \(S_j \) is a saturated non-\(\Lambda \)-measurable set. Let \(P \) be a probability measure on \((R^k, \mathcal{B}(R^k))\).
that is equivalent to Lebesgue measure on \((R^k, \mathcal{B}(R^k))\). There exists a probability space \((R^k, \mathcal{F}, \mu)\) such that \(\mathcal{F}\) includes \(\mathcal{B}(R^k)\), such that \(\mathcal{F}\) contains \(S_1, \ldots, S_N\), such that the measure \(\mu\) agrees with \(P\) on \(\mathcal{B}(R^k)\), and such that \(\mathcal{B}(R^k)\) is independent of \(\sigma(S_1, \ldots, S_N)\).

Proof. Let \(\mathcal{F}\) be the \(\sigma\)-algebra provided by Lemma 2. Recall that \(\mathcal{F}\) contains all sets of the form \((S_1 \cap A_1) \cup \cdots \cup (S_n \cap A_n)\) where \(A_i \in \mathcal{B}(R^k)\) for each positive integer \(i \leq N\). If \(A \in \mathcal{B}(R^k)\) then choosing \(A_1 = \cdots = A_N = A\) implies that \(A \in \mathcal{F}\). Similarly, for any positive integer \(i \leq N\), setting \(A_i = R^k\) and all other \(A_j\)'s equal to the empty set implies that \(S_i \in \mathcal{F}\). Define a measure \(\mu\) on the measurable space \((R^k, \mathcal{F})\) via

\[
\mu((S_1 \cap A_1) \cup \cdots \cup (S_n \cap A_n)) = \frac{1}{N} (P(A_1) + \cdots + P(A_n))
\]

for \((S_1 \cap A_1) \cup \cdots \cup (S_n \cap A_n) \in \mathcal{F}\). That \(\mu\) is well defined follows from Lemma 3 and that \(\mu\) is in fact a probability measure that agrees with \(P\) on \(\mathcal{B}(R^k)\) is then straightforward. Further notice that \(\mu(S_i) = 1/N\) for each positive integer \(i \leq N\) and that, for any set \(B \in \mathcal{B}(R^k)\) and any positive integer \(i \leq N\), \(\mu(S_i \cap B) = \frac{1}{N} P(B) = \mu(S_i)\mu(B)\). Thus \(S_i\) is independent of \(\mathcal{B}(R^k)\) for each positive integer \(i \leq N\). Finally, notice that \(\mathcal{B}(R^k)\) is in fact independent of \(\sigma(S_1, \ldots, S_N)\) since \(\{\emptyset, S_1, \ldots, S_N\}\) is a \(\pi\)-system. Q.E.D.

We are now in a position to state and prove the principal result of this paper.

Theorem 2. Let \(k\) be a positive integer and let \(N\) be an integer greater than one. There exists a probability space \((\Omega, \mathcal{F}, \nu)\), a Gaussian random vector \(X\) defined on \((\Omega, \mathcal{F}, \nu)\) taking values in \(R^k\) with a positive definite covariance matrix, and an \(N\)-level \(k\)-dimensional quantizer \(Q: R^k \rightarrow F\) such that \(\nu(Q(X) = x) = 1/N\) for each \(x\) in \(F\) and such that \(X\) and \(Q(X)\) are independent.

Proof. Let \(S_1, \ldots, S_N\) be sets as provided by Corollary 2. For these \(N\) subsets of \(R^k\), let \((\Omega, \mathcal{F}, \nu)\) be a probability space as provided by Theorem 1 where \(P\) is chosen to be the product measure induced by placing standard Gaussian measure on each factor of \((R^k, \mathcal{B}(R^k))\). For each positive integer \(i \leq N\), let \(\alpha_i\) be an element from \(S_i\). Let \(F\) denote the set \(\{\alpha_1, \ldots, \alpha_N\}\). Define an \(N\)-level \(k\)-dimensional quantizer \(Q: R^k \rightarrow F\) via \(Q(x) = \sum_{i=1}^{N} \alpha_i I_{S_i}(x)\). Further, notice that the random vector \(X(\omega) = \omega; \omega \in \Omega\), is a zero mean Gaussian random vector defined on \((\Omega, \mathcal{F}, \nu)\) whose covariance matrix is the \(k \times k\) identity matrix. Also, notice that for \(1 \leq i \leq N\), \(\nu(Q(X(\omega)) = \alpha_i) = \nu(\omega \in S_i) = 1/N\). Finally, notice that \(X\) and \(Q(X)\) are independent via Theorem 1. Q.E.D.

References

DEPARTMENT OF ELECTRICAL ENGINEERING, SOUTHERN METHODIST UNIVERSITY, DALLAS, TEXAS 75275
E-mail address: ebh@smunews.smu.edu

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, AND DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712
E-mail address: gwise@ccwf.cc.utexas.edu