Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An invariant of links in a handlebody associated with the spin $ j$ representation of $ U\sb q(\mathfrak{sl}(2, \mathbf{C}))$


Author: Shigekazu Nakabo
Journal: Proc. Amer. Math. Soc. 118 (1993), 645-655
MSC: Primary 57M25; Secondary 17B37
DOI: https://doi.org/10.1090/S0002-9939-1993-1132416-9
MathSciNet review: 1132416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an invariant of framed links in a handlebody by means of the spin $ j$ representation of $ {U_q}(\mathfrak{s}\mathfrak{l}(2,\mathbb{C}))$. We can see this invariant is an extension of the Jones polynomial and Kauffman's Dubrovnik polynomial. Moreover, we can obtain a linear representation of the generalized braid group associated with the Lie algebras of types $ B$ and $ C$ by applying the operators used in constructing an invariant to tangles in a solid torus.


References [Enhancements On Off] (What's this?)

  • [1] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61. MR 0293615 (45:2692)
  • [2] V. G. Drinfel'd, Quantum groups, Proc. Internat. Congr. Math. (Berkeley), vol. 1, Amer. Math. Soc., Providence, RI, 1986, pp. 798-826. MR 934283 (89f:17017)
  • [3] M. Jimbo, A $ q$-difference analogue of $ U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. MR 797001 (86k:17008)
  • [4] -, A $ q$-analogue of $ U(\mathfrak{g}\mathfrak{l}(N + 1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252. MR 841713 (87k:17011)
  • [5] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471. MR 958895 (90g:57007)
  • [6] R. Kirby and P. Melvin, The $ 3$-manifold invariants of Witten and Reshetykhin-Turaev for $ \mathfrak{s}\mathfrak{l}(2,\mathbb{C})$, Invent. Math. 105 (1991), 473-545. MR 1117149 (92e:57011)
  • [7] A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra $ {U_q}(\mathfrak{s}\mathfrak{l}(2))$, $ q$-orthogonal polynomials and invariants of links, Infinite dimensional Lie algebras and groups (V. G. Kac, ed.), World Scientific, Singapore, 1989, pp. 285-342. MR 1026957 (90m:17022)
  • [8] G. Lustig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249. MR 954661 (89k:17029)
  • [9] H. R. Morton and P. Strickland, Jones polynomial invariants for knots and satellites, Math. Proc. Cambridge Philos. Soc. 109 (1991), 83-103. MR 1075123 (91j:57007)
  • [10] M. Rosso, Représentations irréductibles de dimension finie du $ q$-analogue de l'algèbre envloppante d'une algèbre de Lie, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 587-590. MR 917574 (89d:17015)
  • [11] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26. MR 1036112 (91c:57016)
  • [12] V. G. Turaev, The Conway and Kauffman modules of solid torus with an appendix of the operator invariants of tangles, LOMI preprint E-6-88 (1988). MR 1603138 (98m:57014)
  • [13] D. N. Yetter, Markov algebra, Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 705-730. MR 975104 (90h:57011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25, 17B37

Retrieve articles in all journals with MSC: 57M25, 17B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1132416-9
Keywords: Invariant of link, framed link, handlebody, spin $ j$ representation of $ {U_q}(\mathfrak{s}\mathfrak{l}(2,\mathbb{C}))$, Jones polynomial, Kauffman's Dubrovnik polynomial, generalized braid group
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society