Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Baire category and forcing large Lindelöf spaces with points $ G\sb \delta$

Author: Isaac Gorelic
Journal: Proc. Amer. Math. Soc. 118 (1993), 603-607
MSC: Primary 03E35; Secondary 03E50, 54A25, 54A35
MathSciNet review: 1132417
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ \kappa $ as large an aleph as we want, we construct by forcing a model in which CH holds and there is a Lindelöf zero-dimensional space of size $ \kappa $ with points $ {G_\delta }$.

References [Enhancements On Off] (What's this?)

  • [1] P. S. Alexandroff and P. S. Urysohn, Memoire sur les espaces topologiques compacts, Nederl. Akad. Wetensch. Proc. Ser. A 14 (1929), 1-96.
  • [2] A. V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955.
  • [3] S. Shelah, On some problems in general topology, preprint, 1978. MR 1367138 (96k:03120)
  • [4] I. Juhasz, Cardinal functions. II, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984. MR 776621 (86j:54008)
  • [5] A. Dow, Two applications of reflection and forcing to topology, Proc. Sixth Prague Topological Symposium, Helderman Verlag, Berlin, 1986. MR 952602 (89k:54007)
  • [6] M. Bell and J. Ginsburg, First countable Lindelöf extensions of uncountable discrete space, Canad. Math. Bull. 23 (1980). MR 602591 (82k:54038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 03E50, 54A25, 54A35

Retrieve articles in all journals with MSC: 03E35, 03E50, 54A25, 54A35

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society