Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak-invariant properties of the norm topology


Authors: I. Namioka and R. Pol
Journal: Proc. Amer. Math. Soc. 118 (1993), 507-511
MSC: Primary 46B20; Secondary 54H05
DOI: https://doi.org/10.1090/S0002-9939-1993-1132419-4
MathSciNet review: 1132419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A property (P) relative to the norm topology of a Banach space is a weak-invariant if, whenever $ A$ and $ B$ are weakly homeomorphic subsets of (possibly different) Banach spaces and ($ A$, norm) has property (P), then ($ B$, norm) has property (P). We show that the property of being $ \sigma $-discrete and the property of being an absolute Souslin- $ \mathcal{F}$ space of weight $ \leqslant {\aleph _1}$, both relative to the norm topology, are weak-invariants. These conclusions are obtained from a result concerning maps of metrizable spaces into function spaces.


References [Enhancements On Off] (What's this?)

  • [1] W. G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309-328. MR 531982 (83c:03043)
  • [2] R. W. Hansell, On characterizing non-separable analytic and extended Borel sets as types of continuous images, Proc. London Math. Soc. 28 (1974), 683-699. MR 0362269 (50:14711)
  • [3] J. E. Jayne and C. A. Rogers, $ K$-analytic sets, Analytic Sets (Conf., University of Coll., Univ. of London, 1978), Academic Press, London and New York, 1980, pp. 1-181.
  • [4] J. L. Kelley et al., Linear topological spaces, Graduate Texts in Math., vol. 27, Springer-Verlag, New York, Heidelberg, and Berlin, 1975.
  • [5] R. Pol, Note on decompositions of metrizable spaces. I, Fund. Math. 95 (1977), 95-103. MR 0433371 (55:6347)
  • [6] A. H. Stone, On $ \sigma $-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666. MR 0156789 (28:33)
  • [7] M. H. Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167-184, 237-254. MR 0027121 (10:255a)
  • [8] W. Sierpinski, General topology, 2nd ed., Univ. of Toronto Press, Toronto, 1956. MR 0050870 (14:394f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 54H05

Retrieve articles in all journals with MSC: 46B20, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1132419-4
Keywords: Weak topology of Banach spaces, $ \sigma $-discreteness, Souslin sets
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society