Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclically presented groups embedded in one-relator products of cyclic groups


Authors: Colin M. Campbell, Patricia M. Heggie, Edmund F. Robertson and Richard M. Thomas
Journal: Proc. Amer. Math. Soc. 118 (1993), 401-408
MSC: Primary 20F05
DOI: https://doi.org/10.1090/S0002-9939-1993-1140665-9
MathSciNet review: 1140665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the groups defined by the presentations

$\displaystyle \langle a,b:{a^2} = {b^n} = a{b^{ - 1}}ab{(aba{b^{ - 1}})^{\alpha - 1}}a{b^2}a{b^{ - 2}} = 1\rangle $

and investigate their structure for small values of $ \alpha $. This forms part of a general investigation into the structure of groups defined by presentations of the form

$\displaystyle \langle a,b:{a^2} = {b^n} = w(a,b) = 1\rangle .$

Connections between these groups and the Fibonacci groups are also explored.

References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, J. W. Morgan, and P. B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc. 102 (1987), 25-31. MR 886432 (88g:20062)
  • [2] A. M. Brunner, The determination of Fibonacci groups, Bull. Austral. Math. Soc. 11 (1974), 11-14. MR 0349849 (50:2342)
  • [3] C. M. Campbell, H. S. M. Coxeter, and E. F. Robertson, Some families of finite groups having two generators and two relations, Proc. Roy. Soc. London Sect. A 357 (1977), 423-438. MR 0460470 (57:463)
  • [4] C. M. Campbell, P. M. Heggie, E. F. Robertson, and R. M. Thomas, One-relator products of cyclic groups and Fibonacci-like sequences, Applications of Fibonacci Numbers (G. E. Bergum et al., eds.), Kluwer Academic Publishers, 1991, pp. 63-68. MR 1193701 (93k:11009)
  • [5] -, Finite one-relator products of two cyclic groups with the relator of arbitrary length, J. Austral. Math. Soc. (to appear).
  • [6] C. M. Campbell, E. F. Robertson, and R. M. Thomas, Fibonacci numbers and groups, Applications of Fibonacci Numbers (A. F. Horadam, A. N. Philippou, and G. E. Bergum, eds.), D. Reidel, 1987, pp. 45-59. MR 951905 (89h:20043)
  • [7] -, On groups related to Fibonacci groups, Group Theory (K. N. Cheng and Y. K. Leong, eds.) de Gruyter, 1989, pp. 323-331. MR 981851 (90a:20059)
  • [8] C. M. Campbell and R. M. Thomas, On $ (2,n)$-groups related to Fibonacci groups, Israel J. Math. 58 (1987), 370-380. MR 917365 (88i:20051)
  • [9] C. P. Chalk and D. L. Johnson, The Fibonacci groups. II, Proc. Royal Soc. Edinburgh Sect. A 77 (1977), 79-86. MR 0463301 (57:3254)
  • [10] M. D. E. Conder, Three-relator quotients of the modular group, Quart. J. Math. 38 (1987), 427-447. MR 916226 (88m:20069)
  • [11] J. H. Conway, Advanced problem $ 5327$, Amer. Math. Monthly 72 (1965), 915.
  • [12] J. H. Conway et al., Solution to advanced problem $ 5327$, Amer. Math. Monthly 74 (1967), 91-93.
  • [13] H. Doostie, Fibonacci-type sequences and classes of groups, PhD Thesis, University of St Andrews, 1988.
  • [14] B. Fine, J. Howie, and G. Rosenberger, One relator quotients and free products of cyclics, Proc. Amer. Math. Soc. 102 (1988), 249-254. MR 920981 (89a:20035)
  • [15] -, Ree-Mendelsohn pairs in generalized triangle groups, Comm. Algebra 17 (1989), 251-258. MR 978473 (90a:20061)
  • [16] B. Fine, F. Levin, and G. Rosenberger, Free subgroups and decompositions of one relator products of cyclics. Part 1: The Tits alternative, Arch. Math. 50 (1988), 97-109. MR 930108 (89c:20050)
  • [17] -, Free subgroups and decompositions of one relator products of cyclics. Part 2: Normal torsion-free subgroups and fpa decompositions, J. Indian Math. Soc. 49 (1988), 237-247.
  • [18] B. Fine and G. Rosenberger, A note on generalized triangle groups, Abh. Math. Sem. Univ. Hamburg 56 (1986), 233-244. MR 882417 (88d:20047)
  • [19] -, Complex representations and one relator products of cyclics, Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 131-147. MR 957516 (89g:20054)
  • [20] G. Havas, A Reidemeister-Schreier program, Proc. Second Internat. Conf. Theory of Groups, Canberra 1973 (M. F. Newman, ed.), Lecture Notes in Math., vol. 372, Springer-Verlag, Berlin and New York, 1974, pp. 347-356. MR 0376827 (51:13002)
  • [21] -, Computer-aided determination of a Fibonacci group, Bull. Austral. Math. Soc. 15 (1976), 297-305. MR 0424949 (54:12907)
  • [22] G. Havas, P. E. Kenne, J. S. Richardson, and E. F. Robertson, A Tietze transformation program, Computational Group Theory (M. D. Atkinson, ed.), Academic Press, 1984, pp. 69-73. MR 760651 (86b:20039)
  • [23] H. Helling, A. C. Kim, and J. L. Mennicke, On Fibonacci groups, preprint.
  • [24] G. Kern-Isberner and G. Rosenberger, Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer Gruppen, Results in Math. 11 (1987), 272-288. MR 897303 (88i:20045)
  • [25] R. C. Lyndon, On a family of infinite groups introduced by Conway, unpublished.
  • [26] M. F. Newman, Proving a group infinite, Arch. Math. 54 (1990), 209-211. MR 1037607 (90j:20068)
  • [27] M. F. Newman and E. A. O'Brien, A computer-aided analysis of some finitely-presented groups, J. Austral. Math. Soc. (to appear).
  • [28] S. J. Pride, Groups with presentations in which each defining relator involves exactly two generators, J. London Math. Soc. (2) 36 (1987), 245-256. MR 906146 (88m:20074)
  • [29] R. M. Thomas, The Fibonacci groups $ F(2,2m)$, Bull. London Math.. Soc. 21 (1989), 463-465. MR 1005823 (91b:20038)
  • [30] -, The Fibonacci groups revisited, Groups-St Andrews 1989 (C. M. Campbell and E. F. Robertson, eds.), vol. 2, London Math. Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, 1991, pp. 445-454. MR 1123998 (92h:20054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F05

Retrieve articles in all journals with MSC: 20F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1140665-9
Keywords: Cyclically presented, one-relator product, Fibonacci
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society