INDEPENDENT EVENTS AND INDEPENDENT EXPERIMENTS

YULIY M. BARYSHNIKOV AND BENNETT EISENBERG

(Communicated by George C. Papanicolaou)

Abstract. It is shown that independent events in a probability space with equally likely outcomes are isomorphic to events coming from independent experiments each with equally likely outcomes.

INTRODUCTION

Let Ω be a finite set with uniform probability distribution P. Denote the cardinality of Ω by $|\Omega| = \prod_{j=1}^{n} p_j$, where the p_j's are prime numbers greater than one, which are not necessarily distinct. Eisenberg and Ghosh [1] show that there does not exist a collection of more than n nontrivial mutually independent events in Ω, where n is the number of prime factors of $|\Omega|$. An event is called trivial if it has probability 0 or 1. The proof is complicated by the fact that it uses the number of times that each distinct prime number occurs in the factorization of $|\Omega|$. In this article we give a more unified proof of the result of Eisenberg and Ghosh.

Next consider the product space $\Omega_1 \times \cdots \times \Omega_n$ with the uniform probability distribution where $|\Omega_j| = p_j$. The Ω_j's can be interpreted as spaces of outcomes of independent experiments, each with equally likely outcomes. If A_j is a nontrivial cylinder set based on Ω_j for $j = 1, \ldots, n$, then A_1, \ldots, A_n form a collection of n nontrivial mutually independent events in $\Omega_1 \times \cdots \times \Omega_n$. These are the most fundamental types of independent events since they are events related to independent experiments. There is a 1-1 map from this product space to Ω, and under this isomorphism the images of the A_j's are nontrivial mutually independent events in Ω. In this article we show that any set of nontrivial mutually independent events in Ω must be of this form; that is, mutually independent events in Ω must be isomorphic to events from independent experiments with equally likely outcomes.
1. INDEPENDENT EVENTS IN A SPACE OF N EQUALLY LIKELY OUTCOMES

The main results are corollaries to the following lemma. The notation of the lemma is used throughout this section.

Lemma. Let Ω be a probability space with N equally likely outcomes. Assume that A_1, \ldots, A_m are nontrivial mutually independent events in Ω. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and let \mathcal{F}_j be the field generated by $\{A_1, \ldots, A_j\}$ for $j = 1, \ldots, m$. Let N_j be the greatest common divisor of the cardinalities of the sets in \mathcal{F}_j.

Then

1. $N_0 = N$ and N_j is a proper divisor of N_{j-1} for $j = 1, \ldots, m$ and
2. $P(A_j) = \frac{h_j N_j}{N_{j-1}}$ for an integer h_j with $1 \leq h_j < \frac{N_{j-1}}{N_j}$.

Proof. Since $\mathcal{F}_{j-1} \subset \mathcal{F}_j$, it follows that N_j divides the cardinality of every set in \mathcal{F}_{j-1}, and hence N_j divides N_{j-1}. We must show that it is a proper divisor, i.e., $N_j < N_{j-1}$.

From the definition of N_{j-1}, it follows that there exists a representation $N_{j-1} = \sum k_a |B_a|$, where the k_a's are integers and the B_a's are sets in \mathcal{F}_{j-1}. Form the sum $S = \sum k_a |B_a A_j|$. Since A_j is independent of \mathcal{F}_{j-1}, it follows that $|B_a A_j| = P(B_a A_j)N = P(B_a)P(A_j)N = |B_a|P(A_j)$. Thus $S = \sum k_a |B_a|P(A_j) = N_{j-1}P(A_j)$. Since S is a sum of integral multiples of the cardinalities of sets in \mathcal{F}_j, it must be divisible by N_j. Thus $N_{j-1}P(A_j) = h_j N_j$ for some integer h_j. Since $0 < P(A_j) < 1$, it follows that $1 \leq h_j < \frac{N_{j-1}}{N_j}$.

Hence $N_j = P(A_j)N_{j-1}/h_j < N_{j-1}$. This proves (1).

Furthermore, $P(A_j) = \frac{h_j N_j}{N_{j-1}}$, which gives (2). \qed

Theorem 1. If A_1, \ldots, A_m are nontrivial mutually independent events in Ω then $m \leq n$, where n is the number of prime factors of N.

Proof. Suppose $m > n$. From the lemma, N_1 is a proper divisor of N. Hence N_1 has at most $n - 1$ prime factors. Continuing in this way, N_m has at most $n - m$ prime factors. Thus $N_n = 1$, which has no proper divisors. But the lemma implies that N_{n+1} must be a proper divisor of N_n. This is a contradiction. \qed

Theorem 2. If A_1, \ldots, A_m are nontrivial mutually independent events in Ω, then there exists an isomorphism from Ω to $\Omega' = \Omega_1 \times \cdots \times \Omega_m \times \Omega_{m+1}$, where $|\Omega_j| = \frac{N_{j-1}}{N_j}$ for $j = 1, \ldots, m$ and $|\Omega_{m+1}| = N_m$, such that A_j gets mapped to a cylinder set based in Ω_j for $j = 1, \ldots, m$.

Proof. According to the lemma, $P(A_j) = \frac{h_j N_j}{N_{j-1}}$ with $1 \leq h_j < \frac{N_{j-1}}{N_j}$. Choose a set of h_j points in Ω_j and let A'_j be the cylinder set based on this set. Then if all points in Ω' are equally likely, we have that $P(A_j) = P(A'_j)$. Due to the independence of A_1, \ldots, A_m in Ω and A'_1, \ldots, A'_m in Ω', we have that each atom in the field generated by A_1, \ldots, A_m has the same probability as the corresponding atom in the field generated by A'_1, \ldots, A'_m. Since $|\Omega| = |\Omega'|$, these atoms must have the same number of points as well. By choosing arbitrary 1-1 maps between points in the corresponding atoms, we get the desired isomorphism. \qed

Corollary. If A_1, \ldots, A_n are nontrivial mutually independent events in Ω, where n is the number of prime factors $|\Omega|$, then one can choose $\Omega' = \Omega_1 \times \cdots \times \Omega_n$ in Theorem 2.
Proof. As in the proof of Theorem 1 we have that \(N_n = 1 \) so that the factor \(\Omega_{n+1} \) is not needed in order that \(|\Omega| = |\Omega'|\). The proof of Theorem 2 then applies to complete the proof. □

Example. Let \(\Omega = \{1, 2, 3, 4, 5, 6\} \), \(A_1 = \{2, 4, 6\} \), and \(A_2 = \{1, 2, 3, 4\} \). Then \(A_1 \) and \(A_2 \) are independent events. \(N = N_0 = 6 \), \(N_1 = 3 \), and \(N_2 = 1 \). \(N_0/N_1 = 2 \) and \(N_1/N_2 = 3 \). Let \(\Omega_1 = \{1, 2\} \) and \(\Omega_2 = \{1, 2, 3\} \). We may then choose \(A'_1 = \{(1, 1), (1, 2), (1, 3)\} \) and \(A'_2 = \{(1, 1), (2, 1), (1, 2), (2, 2)\} \) so that \(A'_1 \) represents the event "1 on experiment 1" and \(A'_2 \) represents the event "1 or 2 on experiment 2." The isomorphism is then any 1-1 map that takes \(A_1A_2 = \{2, 4\} \) to \(A'_1A'_2 = \{(1, 1), (1, 2)\} \), that takes \(A_1A'_2 = \{1, 3\} \) to \(A'_1A'_2 = \{(1, 3)\} \), that takes \(A'_1A_2 = \{1, 3\} \) to \(A'_1A'_2 = \{(1, 3)\} \), and takes \(A'_1A'_2 = \{5\} \) to \(A'_1A'_2 = \{(2, 3)\} \). One way to achieve this is 1 \(\rightarrow (2, 1) \), 2 \(\rightarrow (1, 1) \), 3 \(\rightarrow (2, 2) \), 4 \(\rightarrow (1, 2) \), 5 \(\rightarrow (2, 3) \), and 6 \(\rightarrow (1, 3) \).

In general these conclusions do not apply to pairwise independent events. For example, Eisenberg and Ghosh show that if \(|\Omega| = k^2\) for any \(k \geq 2 \), then there exists a collection of \(k + 1 \) nontrivial pairwise independent events in \(\Omega \). For example, if \(|\Omega| = 25\) then there is a collection of six nontrivial pairwise independent events. On the other hand, there can be no more than two nontrivial mutually independent events in this case. Theorem 1 does extend to pairwise independent events, however, if the prime factors of \(|\Omega|\) are all distinct. This result is also proved in the Eisenberg and Ghosh article.

References

Department of Mathematics, University of Osnabruck, Osnabruck, Germany
E-mail address: yuliy@chryseis.mathematik.uni-osnabrueck.de

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
E-mail address: BE01@Lehigh.EDU