Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tight extensions of normed spaces


Author: N. V. Rao
Journal: Proc. Amer. Math. Soc. 118 (1993), 641-644
MSC: Primary 46B20; Secondary 54D35, 54E35
DOI: https://doi.org/10.1090/S0002-9939-1993-1152288-6
MathSciNet review: 1152288
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that bound extensions as defined by Kaufman (Acta Univ. (Szeged) 21 (1966), 163) and tight extensions as defined by Dress (Adv. in Math. 53 (1984), 322) are the same. Further we find that the property of being a bound extension is preserved under complexification.


References [Enhancements On Off] (What's this?)

  • [1] Henry B. Cohen, Injective envelopes of Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 723-726. MR 0184060 (32:1536)
  • [2] A. W. M. Dress, Trees, tight extension of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), 321-402. MR 753872 (86j:05053)
  • [3] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964/1965), 65-74. MR 0182949 (32:431)
  • [4] -, Injective envelopes of Banach spaces are rigidly attached, Bull. Amer. Math. Soc. 70 (1964), 727-729. MR 0184061 (32:1537)
  • [5] R. Kaufman, A type of extension of Banach spaces, Acta Univ. (Szeged) 21 (1966), 163-166. MR 0205037 (34:4872)
  • [6] Leopoldo Nachbin, Banach spaces with extension property, Trans. Amer. Math. Soc. 68 (1950), 28-46. MR 0032932 (11:369a)
  • [7] N. V. Rao, The metric injective hulls of normed spaces, Topology Appl. (to appear). MR 1177160 (93h:46104)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 54D35, 54E35

Retrieve articles in all journals with MSC: 46B20, 54D35, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1152288-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society