The structure of some right Noetherian rings with Krull dimension one

Author:
C. L. Wangneo

Journal:
Proc. Amer. Math. Soc. **118** (1993), 677-680

MSC:
Primary 16P40; Secondary 16P20, 16P60

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127145-1

MathSciNet review:
1127145

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove a structure theorem for a right Noetherian ring with krull dimension one having a right Artinian quotient ring and, moreover, that has a finitely generated, faithful, critical right module with krull dimension equal to one. We end this note with some examples that clarify certain features of this theorem.

**[1]**A. K. Boyle and E. H. Feller,*Semicritical modules and 𝑘-primitive rings*, Module theory (Proc. Special Session, Amer. Math. Soc., Univ. Washington, Seattle, Wash., 1977) Lecture Notes in Math., vol. 700, Springer, Berlin, 1979, pp. 57–74. MR**550429****[2]**K. A. Brown, T. H. Lenagan, and J. T. Stafford,*Weak ideal invariance and localisation*, J. London Math. Soc. (2)**21**(1980), no. 1, 53–61. MR**576183**, https://doi.org/10.1112/jlms/s2-21.1.53**[3]**A. W. Chatters and C. R. Hajarnavis,*Rings with chain conditions*, Research Notes in Mathematics, vol. 44, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR**590045****[4]**Robert Gordon,*Primary decomposition in right noetherian rings*, Comm. Algebra**2**(1974), 491–524. MR**0360691**, https://doi.org/10.1080/00927877408822023**[5]**-,*Some aspects of non-commutative noetherian rings*, Lecture Notes in Math., vol. 545, Springer-Verlag, New York, 1975, pp. 105-127.**[6]**Robert Gordon and J. C. Robson,*Krull dimension*, American Mathematical Society, Providence, R.I., 1973. Memoirs of the American Mathematical Society, No. 133. MR**0352177****[7]**Günter Krause, T. H. Lenagan, and J. T. Stafford,*Ideal invariance and Artinian quotient rings*, J. Algebra**55**(1978), no. 1, 145–154. MR**515765**, https://doi.org/10.1016/0021-8693(78)90196-5**[8]**Lance W. Small,*Correction and addendum: “Orders in Artinian rings”*, J. Algebra**4**(1966), 505–507. MR**0200301**, https://doi.org/10.1016/0021-8693(66)90036-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16P40,
16P20,
16P60

Retrieve articles in all journals with MSC: 16P40, 16P20, 16P60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127145-1

Article copyright:
© Copyright 1993
American Mathematical Society