ON MAXIMAL k-IDEALS OF SEMIRINGS

M. K. SEN AND M. R. ADHIKARI

(Communicated by Maurice Auslander)

Abstract. For a semiring S with commutative addition, conditions are considered such that S has nontrivial k-ideals or maximal k-ideals, among others, by the help of the congruence class semiring S/A defined by an ideal A of S. Moreover, all maximal k-ideals of the semiring of nonnegative integers are described.

1. Preliminaries

A semiring S is defined as an algebra $(S, +, \cdot)$ such that $(S, +)$ and (S, \cdot) are semigroups connected by $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$ for all $a, b, c \in S$. A semiring S may have an identity 1 [a zero 0], defined by $1a = a1 = a[0 + a = a + 0 = a]$ for all $a \in S$. If there is an element $O \in S$ satisfying $Oa = aO = O$ for all $a \in S$, it is called multiplicatively absorbing or simply absorbing. Such an element satisfies $O + O = O$, but it need not be a zero of S, whereas a zero o of S need not even satisfy $oo = o$. Clearly, a semiring has an absorbing zero iff it has elements O and o which coincide.

A subset $A \neq \emptyset$ of a semiring S is called an ideal of S iff $a + b \in A$, $sa \in A$, and $as \in A$ hold for all $a, b \in A$ and all $s \in S$. An ideal A of S is called proper iff $A \subset S$ holds, where \subset denotes proper inclusion, and a proper ideal A is called maximal iff there is no ideal B of S satisfying $A \subset B \subset S$. Obviously, a semiring S contains an ideal A consisting of one element iff S has an absorbing element O, and then $A = \{O\}$ is the only ideal of this kind. Finally, an ideal A of S is called trivial, iff $A = S$ holds or $A = \{O\}$, the latter clearly if S has an absorbing element. To deal with both cases simultaneously, we introduce the notion S' by $S' = S\{O\}$ if S has an absorbing element, and $S' = S$ otherwise.

In this paper we only consider semirings S for which $(S, +)$ is commutative. If also (S, \cdot) is commutative, S is called a commutative semiring. Moreover, to avoid trivial exceptions, each semiring S is assumed to have at least two elements.

Using only commutativity of addition, the following concepts and statements, essentially due to [1, 2, 4], are well known. For each ideal A of a semiring S.
the *k*-closure \overline{A} of A defined by

$$\overline{A} = \{\overline{a} \in S | \overline{a} + a_1 = a_2 \text{ for some } a_i \in A\}$$

is an ideal of S satisfying $A \subseteq \overline{A}$ and $\overline{A} = \overline{A}$. An ideal A of S is called a *k-ideal* of S iff $A = \overline{A}$ holds. Clearly, S is a k-ideal for each semiring S; however, if S has an absorbing element O, the ideal $\{O\}$ need not be a k-ideal of S. There are examples for $\{O\} \subset \{\overline{O}\} \subset S$ and $\{O\} \subset \{\overline{O}\} = S$, whereas $\{O\} = \{\overline{O}\}$ holds if O is an absorbing zero of S. A k-ideal $A \subset S$ is called a *maximal k-ideal* of S if there is no k-ideal B of S satisfying $A \subset B \subset S$. Note that a maximal k-ideal of S need not be a maximal ideal of S (cf. Remark 4.2).

Moreover, each ideal A of S defines a congruence ρ_A on $(S, +, \cdot)$ by

$$\rho_A = \{(x, y) \in S \times S | x + a_1 = y + a_2 \text{ for some } a_i \in A\}.$$

The corresponding congruence class semiring S/ρ_A, consisting of the classes $x \rho_A$, is also denoted by S/A. The k-closure \overline{A} of A is such a congruence class, and \overline{A} is the absorbing zero of S/A, regardless of whether S has a zero o or an absorbing element O (which implies $o \rho_A = \overline{A}$ or $O \rho_A = \overline{A}$, respectively). Moreover, ρ_A and $\rho_{\overline{A}}$, and hence S/A and S/\overline{A} coincide.

2. Maximal k-ideals

Theorem 2.1. Let S be a semiring such that $S = (a_1, \ldots, a_n)$ is a finitely generated ideal of S. Then each proper k-ideal A of S is contained in a maximal k-ideal of S.

Proof. Let \mathcal{B} be the set of all k-ideals B of S satisfying $A \subseteq B \subset S$, partially ordered by inclusion. Consider a chain $\{B_i | i \in I\}$ in \mathcal{B}. One easily checks that $B = \bigcup_{i \in I} B_i$ is a k-ideal of S, and $S = (a_1, \ldots, a_n)$ implies $B \neq S$, and hence $B \in \mathcal{B}$. So by Zorn's lemma, \mathcal{B} has a maximal element as we were to show.

Corollary 2.2. Let S be a semiring with identity 1. Then each proper k-ideal of S is contained in a maximal k-ideal of S.

The proof is immediate by $S = \{1\}$.

Definition 2.3. A semiring S is said to satisfy condition (C) iff for all $a \in S'$ and all $s \in S$ there are $s_1, s_2 \in S$ such that

$$s + s_1a = s_2a$$

holds. Clearly, if S has an identity 1, then (C) is equivalent to the following condition (C'):

$$1 + s_1a = s_2a$$

holds for each $a \in S'$ and suitable $s_1, s_2 \in S$.

Example 2.4. Let P be the set of all nonnegative rational numbers. Then $(P, +, \cdot)$ with the usual operations, as well as $(P', +, \cdot)$, are semirings with 1 as identity satisfying condition (C'). The same is true, more generally, for each positive cone P of a totally ordered skew-field (cf. [3, Chapter VI]).

Example 2.5. Let \mathbb{N} be the set of all nonnegative integers. Define $a + b = \max\{a, b\}$, and denote by $a \cdot b$ the usual multiplication. Then $(\mathbb{N}, +, \cdot)$ is a
semiring with 1 as identity, which satisfies (C') since \(1 + a = a \) holds for all \(a \in S' \).

Lemma 2.6. If a semiring \(S \) with an absorbing zero \(O \) satisfies condition (C), then \(ab = O \) for \(a, b \in S \) implies \(a = O \) or \(b = O \).

Proof. By way of contradiction, assume \(ab = O \) and \(a \neq O \neq b \). Then \(s + s_1a = s_2a \), according to (C), yields \(sb + s_1ab = s_2ab \), i.e., \(sb = O \) for all \(s \in S \). Consequently, \(x + s_3b = s_4b \) implies \(x = O \) for all \(s_3, s_4 \in S \), which contradicts (C) applied to the element \(b \in S' \).

Theorem 2.7. Let \(S \) be a semiring. Then condition (C) implies that \(S \) contains only trivial \(k \)-ideals. The converse is true if \((S, \cdot) \) is commutative, and, provided that \(S \) has an absorbing element \(O \), \(Sa = \{ sa | s \in S \} \neq \{ O \} \) holds for all \(a \in S' \).

Proof. Assume that \(S \) satisfies (C). Let \(A \) be a \(k \)-ideal of \(S \) which contains at least one element \(a \in S' \). Then \(s + s_1a = s_2a \), according to (C), implies \(s \in A \) for each \(s \in S \), i.e., \(A = S \). For the converse, our supplementary assumptions on \(S \) yield that \(Sa \) is an ideal of \(S \) and that \(Sa \neq \{ O \} \) holds for each \(a \in S' \) if \(S \) has an absorbing element \(O \). Now assume that \(S \) has only trivial \(k \)-ideals. Then the \(k \)-ideal \(Sa \) coincides with \(S \) for each \(a \in S' \), regardless of whether \(S \) has an element \(O \) or not. Now,

\[
Sa = \{ s \in S | s + s_1a = s_2a \text{ for some } s_i \in S \} = S
\]

states that \(S \) satisfies condition (C).

Corollary 2.8. Let \(S \) be a commutative semiring with identity. Then \(S \) has only trivial \(k \)-ideals if it satisfies condition (C').

Proof. It was already stated that (C') is equivalent to (C) if \(S \) has an identity 1, and \(a = 1a \in Sa \) implies \(Sa \neq \{ O \} \) for all \(a \in S' \) in the case that \(S \) has an absorbing element \(O \). Hence the corollary follows from Theorem 2.7.

Theorem 2.9. Let \(S \) be a commutative semiring with identity 1 and \(A \) a proper \(k \)-ideal of \(S \). Then \(A \) is maximal iff the semiring \(S/A = S/\rho_A \) satisfies condition (C').

Proof. Suppose \(A \) is a maximal \(k \)-ideal of \(S \). Then \(A \) is the absorbing zero of \(S/A \) and \(1\rho_A \) is its identity. Consider any \(c\rho_A \in (S/A)' \). Then \(c \notin A \) holds, and the smallest ideal \(B \) of \(S \) containing \(c \) and \(A \) consists of all elements \(sc, a \), and \(sc + a \) for \(s \in S \) and \(a \in A \). From \(A \subseteq B \) it follows \(B = S \), and hence \(1 + b_1 = b_2 \) for suitable elements \(b_1, b_2 \in B \). To avoid the discussion of different cases, we add \(1c + a \) with an arbitrary element \(a \in A \) to \(1 + b_1 = b_2 \) and obtain

\[
1 + s_1c + a_1 = s_2c + a_2, \quad \text{i.e., } \quad 1\rho_A + (s_1\rho_A)(c\rho_A) = (s_2\rho_A)(c\rho_A)
\]

for suitable \(s_i \in S \) and \(a_i \in A \). This shows that \(S/A \) satisfies (C').

Conversely, assume (C') for \(S/A \), and let \(B \) be a \(k \)-ideal of \(S \) satisfying \(A \subseteq B \). Then there is an element \(c \in B \setminus A \), and \(c\rho_A \in (S/A)' \) yields \((1 + s_1c)\rho_A = (s_2c)\rho_A \) for suitable elements \(s_1 \in S \) by (C'). Hence \(1 + s_1c + a_1 = s_2c + a_2 \) holds for some \(a_i \in A \), i.e., \(1 + b_1 = b_2 \) for \(b_1, b_2 \in B \). This shows \(B = S \) and that \(A \) is a maximal \(k \)-ideal of \(S \).
3. Completely prime k-ideals

Recall that an ideal \(A \) of a semiring \(S \) is called completely prime (cf., e.g., [5]) iff \(ab \in A \) implies \(a \in A \) or \(b \in A \) for all \(a, b \in S \).

Proposition 3.1. Let \(S \) be a commutative semiring with identity. Then each maximal k-ideal \(A \) of \(S \) is completely prime.

Proof. By Theorem 2.9, the semiring \(S/A \) satisfies the condition \((C')\) and hence \((C)\). Since \(S/A \) has \(A \) as its absorbing zero, we can apply Lemma 2.6 and obtain that \(S/A \) has no zero-divisors. Hence \(ap_A \neq A \) and \(bp_A \neq A \) imply \((ab)p_A \neq A\), i.e., \(a \notin A \) and \(b \notin A \) imply \(ab \notin A \) as we were to show.

Concerning the converse of Proposition 3.1, we show that a completely prime ideal \(A \) of a commutative semiring \(S \) with identity need not be a k-ideal, and if it is one, \(A \) need not be a maximal k-ideal of \(S \).

Example 3.2. Let \(S \) be the set of all real numbers \(a \) satisfying \(0 < a \leq 1 \), and define \(a + b = a \cdot b = \min\{a, b\} \) for all \(a, b \in S \). Then \((S, +, \cdot)\) is easily checked to be a commutative semiring with 1 as identity. Each real number \(r \) such that \(0 < r < 1 \) defines an ideal \(A = \{a \in S|a < r\} \) of \(S \) which is obviously completely prime. However, \(r + 1 = r \) together with \(r \in A \) and \(1 \notin A \) show that \(A \) is not a k-ideal of \(S \). The same is true if one includes 0 in these considerations (in this case 0 is an absorbing element but not a zero of \(S \cup \{0\} \)), but also if one adjoins 0 as an absorbing zero to \(S \) (cf., e.g., [7, Lemma 1.3]).

Example 3.3. The polynomial ring \(\mathbb{Z}[x] \) over the ring \(\mathbb{Z} \) of integers contains the subsemiring

\[
S = \mathbb{N}[x] = \left\{ f(x) = \sum_{i=0}^{n} a_i x^i | a_i \in \mathbb{N} \right\},
\]

which is clearly commutative and has 1 as its identity. The ideal \(A = (x) \) of \(S \) consists of all \(f(x) \in S \) such that \(a_0 = 0 \) holds. Obviously, \(A \) is completely prime and a k-ideal of \(S \). Now consider the set \(B \) consisting of all \(f(x) \in S \) for which \(a_0 \) is divisible by 2. Clearly, \(B \) is a k-ideal of \(S \), and \(A \subset B \subset S \) shows that \(A \) is not a maximal k-ideal.

4. Maximal k-ideals of \(\mathbb{N} \)

In this section we consider the semiring \((\mathbb{N}, +, \cdot)\) of nonnegative integers with respect to their usual operations.

Proposition 4.1. The semiring \(\mathbb{N} \) has exactly the k-ideals \((a) = \{na|n \in \mathbb{N}\} \) for each \(a \in \mathbb{N} \). Consequently, the maximal k-ideals of \(\mathbb{N} \) are given by \((p)\) for each prime number \(p \).

Proof. Obviously, each ideal \((a)\) of \(\mathbb{N} \) is a k-ideal. Now assume that \(A \neq (0) \) is a k-ideal of \(\mathbb{N} \). Let \(a \) be the smallest positive integer contained in \(A \), and \(b \) any element of \(A \). Then \(b = qa + r \) holds for some \(q \in \mathbb{N} \) and \(r \in \mathbb{N} \) satisfying \(0 \leq r < a \). Since \(r \) belongs to the k-ideal \(A \), it follows that \(r = 0 \), and, hence, \(A = (a) \). The last statement follows since \((a) \subseteq (b)\) holds iff \(b \) divides \(a \).
Remark 4.2. None of the maximal k-ideals (p) of \mathbb{N} is a maximal ideal of \mathbb{N}. This follows since each ideal $A = (p)$ is properly contained in the proper ideal $B = \{b \in \mathbb{N} | b \geq p\}$ of \mathbb{N}.

ACKNOWLEDGMENT

Thanks to the learned referee for all the pains undertaken for the improvement of the paper.

REFERENCES