Bordism classes of vector bundles over real projective spaces
Author:
Bruce F. Torrence
Journal:
Proc. Amer. Math. Soc. 118 (1993), 963-969
MSC:
Primary 57R90; Secondary 55N22
DOI:
https://doi.org/10.1090/S0002-9939-1993-1136239-6
MathSciNet review:
1136239
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A basis is presented for the classes in
. This basis is used to prove that every smooth involution
on a closed manifold bounds if its fixed point set is a disjoint union of odd-dimensional projective spaces of constant dimension.
- [1]
F. L. Capobianco, Stationary points of
-actions, Proc. Amer. Math. Soc. 67 (1976), 377-380. MR 0425993 (54:13942)
- [2] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, Berlin, 1964. MR 0176478 (31:750)
- [3] C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology 17 (1978), 309-330. MR 516213 (82a:57036)
- [4] D. C. Royster, Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29 (1980), 267-276. MR 563211 (81i:57034)
- [5] R. E. Stong, Involutions fixing projective spaces, Michigan Math. J. 13 (1966), 445-457. MR 0206979 (34:6795)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R90, 55N22
Retrieve articles in all journals with MSC: 57R90, 55N22
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1136239-6
Keywords:
Cobordism,
involution
Article copyright:
© Copyright 1993
American Mathematical Society