Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Shore points and dendrites

Authors: Víctor Neumann Lara and Isabel Puga-Espinosa
Journal: Proc. Amer. Math. Soc. 118 (1993), 939-942
MSC: Primary 54F15; Secondary 54F50
MathSciNet review: 1137230
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A point $ x$ in a dendroid $ {\mathbf{X}}$ is called a shore point if there is a sequence of subdendroids of $ {\mathbf{X}}$ not containing $ x$ and converging to $ {\mathbf{X}}$ in the Hausdorff metric. We give necessary and sufficient conditions for a dendroid to be a dendrite, in terms of shore points and Kelley's property.

References [Enhancements On Off] (What's this?)

  • [1] S. T. Czuba, On dendroids with Kelley's property, Proc. Amer. Math. Soc. 102 (1988), 728-730. MR 929011 (89g:54075)
  • [2] J. J. Charatonik and Carl Eberhart, On smooth dendroids, Fund. Math. LXVII (1970), 297-322. MR 0275372 (43:1129)
  • [3] E. E. Grace and E. J. Vought, Weakly monotone images of smooth dendroids, Houston J. Math. 14 (1988), 191-200. MR 978725 (89k:54081)
  • [4] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. MR 0006505 (3:315b)
  • [5] L. Montejano and I. Puga, Shore points in dendroids and conical pointed hyperspaces, Topology Appl. 46 (1992), 41-54. MR 1177162 (93i:54005)
  • [6] S. B. Nadler, Hyperspaces of sets, Marcel Dekker, 1978. MR 0500811 (58:18330)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F15, 54F50

Retrieve articles in all journals with MSC: 54F15, 54F50

Additional Information

Keywords: Dendroid, dendrite, shore point, Kelley's property
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society