C*-EXTREME POINTS
OF SOME COMPACT C*-CONVEX SETS

D. R. FARENICK AND PHILLIP B. MORENZ

(Communicated by Palle E. T. Jorgensen)

Abstract. In the C*-algebra M_n of complex $n \times n$ matrices, we consider the notion of noncommutative convexity called C*-convexity and the corresponding notion of a C*-extreme point. We prove that each irreducible element of M_n is a C*-extreme point of the C*-convex set it generates, and we classify the C*-extreme points of any C*-convex set generated by a compact set of normal matrices.

1. Introduction

For C*-algebras and, more generally, for bimodules over C*-algebras there is a notion of convexity that incorporates algebra-valued convex coefficients in a natural way. This form of convexity, called C*-convexity, was studied in its own right by Loebl and Paulsen in [6] and by Hopenwasser, Moore, and Paulsen in [5]. There is an extremal theory associated with C*-convexity and it is our aim in this paper to further its development by studying the C*-extreme points of specific compact C*-convex sets in the C*-algebra M_n of complex $n \times n$ matrices.

Sections 3 and 4 contain the main results. In §3 it is proved that every irreducible element of M_n is a C*-extreme point of the C*-convex set it generates. In §4 conditions are presented that must be satisfied by the C*-extreme points of a C*-convex set generated by a family of matrices; these necessary conditions lead to a classification of the C*-extreme points of compact C*-convex sets generated by normals. Auxiliary results include an extension of Stampfli's theorem concerning the extreme points of the classical numerical range of a hyponormal operator and a result to the effect that irreducible elements $x \in M_n$ can be determined up to unitary equivalence among all elements of M_n by the norms of linear polynomials in x with coefficients taken from M_n.

We begin by recalling the definitions [6] of C*-convexity and C*-extreme point. A subset K of a unital C*-algebra A is said to be C*-convex if K is closed under the formation of finite sums of the type $\sum_i t_i^* x_i t_i$, where each
$x_i \in K$ and the elements $t_i \in A$ are under the proviso that $\sum_i t_i^* t_i = 1$. The t_i are called C^*-convex coefficients and the C^*-convex combination $\sum_i t_i^* x_i t_i$ is called proper if each coefficient t_i is invertible in A. An element x in a C^*-convex set $K \subset A$ is said to be a C^*-extreme point of K if the only possible representations of x as proper C^*-convex combinations of elements $x_i \in K$ are those for which each x_i comes from the unitary orbit of x. To distinguish extreme points from C^*-extreme points, the former are sometimes referred to as linear extreme points.

In [6] it is shown that the C^*-extreme points of C^*-convex subsets of M_n are linear extreme points, and in [5] an example in M_2 of a C^*-convex set having some linear extreme points that are not C^*-extreme is provided. In §4 we present a new class of examples, occurring in every matrix algebra, that show that linear extreme points need not be C^*-extreme. Although a compact C^*-convex subset of M_n always possesses C^*-extreme points [4], the Krein-Milman type problem of whether such extreme points exist in sufficient numbers to recover the original set remains open.

Complete information about the C^*-extreme points of certain C^*-convex sets is available in a few special cases: the closed unit ball of the algebra of operators acting on a Hilbert space, the closed interval $\{x : 0 \leq x \leq 1\}$ of operators, and the set of $x \in M_2$ with numerical radius $w(x) \leq 1$ (see [5]). We augment these results by completing the classification begun in [4] of the C^*-extreme points of C^*-convex sets generated by compact sets of normal matrices (Corollary 4.2) and by determining all of the C^*-extreme points of the C^*-convex set generated by a single 2×2 matrix (Theorem 4.3).

One source for interest in C^*-convexity is the theory of matricial ranges [1, §2.4; 3; 9, §4]. The nth matricial range of an element a in a unital C^*-algebra A is the compact C^*-convex subset $W^n(a) \subset M_n$ of elements of the form $\phi(a)$, where ϕ denotes a unital completely positive map of A into M_n. If x is an element of $B(H)$, the C^*-algebra of bounded linear operators on a complex Hilbert space H, then the numerical range $W^1(x)$ of x is the closure of the classical numerical range $\{(x\xi, \xi) : \xi \in H, ||\xi|| = 1\}$. In §5 some of our results on C^*-extreme points are applied to the matricial ranges of hyponormal operators.

The C^*-convex hull of a subset $\mathcal{S} \subset M_n$ is the smallest C^*-convex set containing \mathcal{S} and is denoted by C^*-conv \mathcal{S}. An essential fact is that C^*-conv \mathcal{S} is compact whenever \mathcal{S} is a compact subset of M_n [3, 2.4].

The unitary equivalence of x and z is denoted by $x \sim z$ and is taken to mean that there is a unitary u such that $x = u^* zu$.

2. ON A COMPLETE UNITARY INVARIANT OF IRREDUCIBLE MATRICES

The (finite) order of an irreducible operator $x \in B(H)$ is the least positive integer k, if it exists, for which the values of $\| \sum_{i=0}^k x^i \otimes c_i \|$, where c_0, c_1, \ldots, c_k are complex $n \times n$ matrices with n arbitrary, determine x among the irreducible elements of $B(H)$ uniquely up to unitary equivalence. An important theorem of Arveson asserts that for irreducible compact operators acting on a complex separable Hilbert space, the order exists and is equal to 1 [1, Chapter 2]; in particular, irreducible elements in the C^*-algebra M_n are of first order. The purpose of this section is to show that for the algebra M_n the situation is
somewhat more special in that irreducible elements \(x \in M_n \) can be determined up to unitary equivalence among all elements of \(M_n \) by the norms of linear matrix polynomials \(x \otimes c_1 + 1 \otimes c_0 \) in just one algebra only—\(M_n \otimes M_n \).

2.1. **Theorem.** Suppose that \(x, z \in M_n \) satisfy \(\| x \otimes b + 1 \otimes m \| = \| z \otimes b + 1 \otimes m \| \) for every \(b, m \in M_n \). If \(x \) is irreducible, that is, if the only selfadjoint idempotents commuting with \(x \) are 0 and 1, then \(z \) must be irreducible and, moreover, unitarily equivalent to \(x \).

As in Arveson's paper [1], the proof of Theorem 2.1 involves the use of his boundary theorem and the comparison of the matricial ranges of \(z \) with those of \(x \). It is in this latter aspect that the connection with \(C^* \)-convexity theory arises.

Every unital completely positive map \(\phi : M_n \rightarrow M_n \) has the form \(\phi(\cdot) = \sum t_i^* (\cdot) t_i \), where the sum is a finite sum and the matrices \(t_i \) satisfy \(\sum t_i^* t_i = 1 \) [2]. Hence, the \(C^* \)-convex set generated by \(x \in M_n \) is precisely the \(n \)th matricial range of \(x \), and so we are able to make use of some of the results of [3; 9] in a manner summarized by the

2.2. **Theorem.** For \(x, z \in M_n \), the following statements are equivalent.

1. \(C^* \)-conv\{\(x \)\} \(\subseteq \) \(C^* \)-conv\{\(z \)\};
2. \(W^1(x \otimes b + 1 \otimes m) \subseteq W^1(z \otimes b + 1 \otimes m) \) for every \(b, m \in M_n \);
3. \(\| x \otimes b + 1 \otimes m \| \leq \| z \otimes b + 1 \otimes m \| \) for every \(b, m \in M_n \).

Proof. In identifying \(C^* \)-conv\{\(x \)\} with \(W^n(x) \) and \(C^* \)-conv\{\(z \)\} with \(W^n(z) \), the implication (3) \(\Rightarrow \) (1) is given by [3, 2.1] and the equivalence of (1) and (2) by [9, 4.3]. To prove the implication (1) \(\Rightarrow \) (3), observe that because \(x \in W^n(x) \subseteq W^n(z) \), there is a unital completely positive \(\phi : M_n \rightarrow M_n \) with \(x = \phi(z) \). The induced map \(\phi \otimes \text{id} \) on \(M_n \otimes M_n \), where \(\text{id} : M_n \rightarrow M_n \) is the identity map, is a contraction, and therefore for each \(b, m \in M_n \),

\[
\| x \otimes b + 1 \otimes m \| = \| \phi(z) \otimes b + 1 \otimes m \| \leq \| z \otimes b + 1 \otimes m \|.
\]

We now provide the

Proof of Theorem 2.1. Using Theorem 2.2, the hypothesis is that \(W^n(x) = W^n(z) \). There exist, therefore, unital completely positive maps \(\phi, \psi : M_n \rightarrow M_n \) such that \(x = \psi(z) \) and \(z = \phi(x) \), whence \(x = \psi \circ \phi(x) \). Let \(\mathcal{L} \) denote the subspace spanned by \(x, x^* \), and 1, and let \(\psi \) denote the identity map \(\mathcal{L} \rightarrow M_n \): namely, \(\psi = \psi \circ \phi \mid_{\mathcal{L}} \). Because \(\mathcal{L} \) is irreducible and the \(C^* \)-algebra \(\mathcal{L} \) generates is \(M_n \), the boundary theorem of Arveson [1, 2.1.1] states that \(\psi \) has a unique completely positive extension to \(M_n \). The identity map and \(\psi \circ \phi \), being two such extensions of \(\psi \), must therefore coincide.

From \(\text{id} = \psi \circ \phi \), it follows that, for every \(a \in M_n \),

\[
\| a \| = \| \psi(\phi(a)) \| \leq \| \phi(a) \| \leq \| a \|;
\]

that is, \(\phi \) is a unital isometry on \(M_n \) and, therefore, has the form \(x \mapsto u^* x u \) or \(x \mapsto u^* x^t u \) for some unitary \(u \in M_n \) [7]. Complete positivity rules out the latter possibility, so that \(z = \phi(x) = u^* x u \) as desired. □

3. **\(C^* \)-convex sets with a single, irreducible generator**

Using the main result of §2, we will prove that each irreducible element of \(M_n \) is \(C^* \)-extreme in the \(C^* \)-convex set it generates.
3.1. **Theorem.** If \(x \in M_n \) is irreducible, then \(x \) is a \(C^* \)-extreme point of its \(C^* \)-convex hull.

Proof. Suppose that \(x = \sum_i t_i^* x_i t_i \) for some elements \(x_i \in C^*\text{-conv} \{x\} \) and for some invertible \(C^* \)-convex coefficients \(t_i \in M_n \). Because each \(x_i \in C^*\text{-conv} \{x\} \), it follows from (2) of Theorem 2.2 that \(W^1(x_i \otimes b + 1 \otimes m) \subset W^1(x \otimes b + 1 \otimes m) \) for every \(i \) and for every \(b, m \in M_n \). We now show that the reverse inclusions \(W^1(x \otimes b + 1 \otimes m) \subset W^1(x_i \otimes b + 1 \otimes m) \) hold.

Fix \(b, m \in M_n \). Let \(\lambda \) be an arbitrary extreme point of \(W^1(x \otimes b + 1 \otimes m) \); so \(\lambda \) is determined by some unit vector \(\xi \in \mathbb{C}^n \otimes \mathbb{C}^n \). By using the unit vectors

\[
\eta_i = ||(t_i \otimes 1)\xi||^{-1}(t_i \otimes 1)\xi
\]

and the induced elements

\[
\lambda_i = ((x_i \otimes b + 1 \otimes m)\eta_i, \eta_i),
\]

the extreme point \(\lambda \) can be expressed as a (proper) convex combination of the \(\lambda_i \in W^1(x_i \otimes b + 1 \otimes m) \) as follows:

\[
\lambda = ((x \otimes b + 1 \otimes m)\xi, \xi) = \sum_i ((x_i \otimes b + 1 \otimes m)(t_i \otimes 1)\xi, (t_i \otimes 1)\xi) = \sum_i ||(t_i \otimes 1)\xi||^2 \lambda_i.
\]

But each \(\lambda_i \) is an element of \(W^1(x \otimes b + 1 \otimes m) \) and therefore, because \(\lambda \) is an extreme point of \(W^1(x \otimes b + 1 \otimes m) \), we must have \(\lambda_i = \lambda \) for every \(i \). This proves that the extreme points of \(W^1(x \otimes b + 1 \otimes m) \) lie in each of the sets \(W^1(x_i \otimes b + 1 \otimes m) \). Hence, \(W^1(x \otimes b + 1 \otimes m) \) is contained in each \(W^1(x_i \otimes b + 1 \otimes m) \) and so, by Theorem 2.2, \(C^*\text{-conv} \{x_i\} = C^*\text{-conv} \{x\} \) for every \(i \). Equivalently, \(||x_i \otimes b + 1 \otimes m|| = ||x \otimes b + 1 \otimes m|| \) for every \(b, m \in M_n \) and every \(i \). But \(x \) is irreducible, and so as Theorem 2.1 asserts, each \(x_i \) is unitarily equivalent to \(x \); that is, \(x \) is a \(C^* \)-extreme point of its \(C^* \)-convex hull. \(\square \)

4. **The search for \(C^* \)-extreme points; narrowing down the possibilities**

Before we can hope to answer the Krein-Milman question of whether the \(C^* \)-extreme points are sufficient to recover the original \(C^* \)-convex set, it would help to be able to describe all the \(C^* \)-extreme points. The purpose of this section is to present necessary conditions for points to be \(C^* \)-extreme in various cases in order to narrow the search considerably. The main results are Theorem 4.1 and its applications.

We begin by presenting techniques for rewriting \(C^* \)-convex combinations.

Technique A. Let \(x = \sum_{i=1}^m t_i^* x_i t_i \) with \(\sum_i t_i^* t_i = 1 \) and \(||t_i|| < 1 \) for each \(i \). If this is not already a proper \(C^* \)-convex combination, then we can rewrite it as one in the following manner. Let

\[
a_i = (m - 1)^{-1/2}(1 - t_i^* t_i)^{1/2}
\]

(invertible since \(||t_i|| < 1 \)),

\[
\kappa_{ij} = \frac{1 - \delta_{ij}}{m - 1}, \quad h_{ij} = \sqrt{k_{ij} t_j a_i^{-1}}.
\]
For each \(i \),
\[
\sum_j h_{ij}^* h_{ij} = \sum_j \sqrt{\kappa_{ij}} (a_i^{-1})^* t_i^* t_i a_i^{-1} \sqrt{\kappa_{ij}}
\]
\[
= (1 - t_i^* t_i)^{-1/2} \left(\sum_j (1 - \delta_{ij}) t_j^* t_j \right) (1 - t_i^* t_i)^{-1/2}
\]
\[
= (1 - t_i^* t_i)^{-1/2} (1 - t_i^* t_i) (1 - t_i^* t_i)^{-1/2} = 1,
\]
and so \(z_i = \sum_{j=1}^m h_{ij}^* x_j h_{ij} \in C^*\text{-conv}\{x_1, \ldots, x_m\} \) by the above computation.
Further, \(x = \sum_i a_i^* z_i a_i \) is a representation of \(x \) as a proper \(C^* \)-convex combination of the \(z_i \). An important subtlety that will be essential later is that each \(h_{ij} = 0 \) and so each \(z_i \) is a \(C^* \)-convex combination of the \(x_j \) using fewer than \(m \) nonzero coefficients.

Technique B. If \(p_i^* p_i + p_2^* p_2 = 1 \) and if
\[
-(\sigma > \sigma) + (1 - p_i^ p_i) > (1 - p_2^* p_2)\]
then for every scalar \(\lambda \in (0, 1) \), \(x \) can be rewritten as
\[
x = \begin{pmatrix} 1 & 0 \\ 0 & p_1^* \end{pmatrix} x_1 \begin{pmatrix} 1 & 0 \\ 0 & p_1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & p_2^* \end{pmatrix} x_2 \begin{pmatrix} 0 & 0 \\ 0 & p_2 \end{pmatrix},
\]
then for every scalar \(\lambda \in (0, 1) \), \(x \) can be rewritten as
\[
x = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda p_1^* \end{pmatrix} x_1 \begin{pmatrix} \lambda & 0 \\ 0 & \lambda p_1 \end{pmatrix} + \begin{pmatrix} \sqrt{1 - \lambda^2} & 0 \\ 0 & (1 - \lambda^2 p_1^* p_1)^{1/2} \end{pmatrix} x' \begin{pmatrix} \sqrt{1 - \lambda^2} & 0 \\ 0 & (1 - \lambda^2 p_1^* p_1)^{1/2} \end{pmatrix},
\]
where
\[
x' = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1 - \lambda^2} (1 - \lambda^2 p_1^* p_1)^{-1/2} p_1^* \end{pmatrix} x_1 \begin{pmatrix} 1 & 0 \\ 0 & p_1 \sqrt{1 - \lambda^2} (1 - \lambda^2 p_1^* p_1)^{-1/2} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & (1 - \lambda^2 p_1^* p_1)^{-1/2} p_2^* \end{pmatrix} x_2 \begin{pmatrix} 0 & 0 \\ 0 & p_2 (1 - \lambda^2 p_1^* p_1)^{-1/2} \end{pmatrix}.
\]
Observe that in order for \(x \) to be a proper \(C^* \)-convex combination of \(x_1 \) and \(x' \), it is sufficient that \(p_1 \) be invertible.

Technique C. If \(\sum_{i=1}^m p_i^* p_i \) is invertible, then
\[
\sum_i \begin{pmatrix} 0 & 0 \\ 0 & p_i^* \end{pmatrix} x_i \begin{pmatrix} 0 & 0 \\ 0 & p_i \end{pmatrix}
\]
can be rewritten as
\[
\begin{pmatrix} 0 \\ 0 \end{pmatrix} (\sum_j p_j^* p_j)^{1/2} z \begin{pmatrix} 0 \\ 0 \end{pmatrix} (\sum_j p_j^* p_j)^{1/2},
\]
where \(z \in C^*\text{-conv}\{x_i\} \) and is given by
\[
z = \sum_i \begin{pmatrix} m^{-1/2} & 0 \\ 0 & (\sum_j p_j^* p_j)^{-1/2} p_i^* \end{pmatrix} x_i \begin{pmatrix} m^{-1/2} & 0 \\ 0 & p_i (\sum_j p_j^* p_j)^{-1/2} \end{pmatrix}.
\]

Finally, we will make use of the following two elementary facts. One is that if \(K \subseteq M_n \) is \(C^* \)-convex, and if \(p \in M_n \) is a projection, then the compression \(p K p \) of \(K \) to the image of \(p \) is clearly \(C^* \)-convex. The other is that \(x = x_1 \oplus x_2 \).
is C^*-extreme in K only if x_1 and x_2 are C^*-extreme in the corresponding compressed images of K. To prove the second fact, suppose that x_1, say, is not C^*-extreme in K_1, the corresponding compression of K. Then x_1 can be expressed as a proper C^*-convex combination $\sum_{i=1}^{m} s_i^* z_i s_i$ of elements $z_i \in K_1$, with at least one $z_i \not\sim x_1$. Thus,

$$x = \sum_{i=1}^{m} (s_i \oplus m^{-1/2} 1)^* (z_i \oplus x_2) (s_i \oplus m^{-1/2} 1)$$

is a representation of x as a proper C^*-convex combination of elements $z_i \oplus x_2 \in K$, where at least one $z_i \oplus x_2 \not\sim x_1 \oplus x_2$.

4.1. **Theorem.** Suppose that $K = C^*$-conv{$x_\alpha : \alpha \in I$} $\subset M_n$, where I is any index set. If x is C^*-extreme in K, then x must be unitary equivalent to some x_α or reducible. Moreover, there exist projections q_i such that $\sum_i q_i = 1$, $x = \sum_i q_i x'_i q_i$, and each $x'_i \sim x_\alpha$.

Proof. Let $x = \sum_{i=1}^{m} t_i x_\alpha t_i$ be a representation of x as a C^*-convex combination of the x_α using the fewest number of coefficients possible. (This least integer m does not change if x is replaced by some $x' \sim x$.) Because $m = 1$ if and only if $x \sim x_{\alpha_1}$, it is assumed henceforth that $m \geq 2$ and that x is not unitarily equivalent to some x_α. We are to prove that x is reducible.

We will assume without loss of generality that $\|t_i\| = 1$. Such an assumption is valid for the following reasons. If, on the contrary, $\|t_i\| < 1$ for every i, then x can be rewritten using Technique A as a proper C^*-convex combination of elements z_i. Because x is a C^*-extreme point of K, each z_i must be unitarily equivalent to x. However, the construction in Technique A shows that each z_i is a C^*-convex combination of fewer than m of the x_α; hence, x must possess this property of the z_i as well, in contradiction of the minimality of m. Thus, at least one coefficient t_i has unit norm.

By expressing each coefficient t_i in its polar decomposition $t_i = u_i a_i$, where u_i is unitary and $a_i \geq 0$, and by absorbing the unitary part u_i of t_i into x_{α_i}, we have that $x = \sum_i a_i x'_i a_i$, where $a_i \geq 0$, $\sum_i a_i^2 = 1$, and $x'_i = u_i^* x_{\alpha_i} u_i$. There is a unitary $u \in M_n$ for which $u^* a_i u$ has a representation as a 2×2 operator matrix given by

$$u^* a_i u = \begin{pmatrix} 1 & 0 \\ 0 & y_1 \end{pmatrix}$$

with $y_1 \geq 0$ and $\|y_1\| < 1$. (This follows from the fact that $a_i \geq 0$ and $\|a_i\| = 1$.) Because $a_i \geq 0$ for all $i \geq 2$ and because $\sum_i a_i^2 = 1$, the same unitary u gives

$$u^* a_i u = \begin{pmatrix} 0 & 0 \\ 0 & y_i \end{pmatrix}$$

for $i \geq 2$.

Again, each $y_i \geq 0$. Hence,

$$x' = \begin{pmatrix} 1 & 0 \\ 0 & y_1 \end{pmatrix} x''_{\alpha_1} \begin{pmatrix} 1 & 0 \\ 0 & y_1 \end{pmatrix} + \sum_{i \geq 2} \begin{pmatrix} 0 & 0 \\ 0 & y_i \end{pmatrix} x''_{\alpha_i} \begin{pmatrix} 0 & 0 \\ 0 & y_i \end{pmatrix},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(x' = u x u^* \) and \(x'' = u^* x' u \); for simplicity of notation, let us assume that
\[
\begin{align*}
 a_1 &= \begin{pmatrix} 1 & 0 \\ 0 & y_1 \end{pmatrix}, & a_i &= \begin{pmatrix} 0 & 0 \\ 0 & y_i \end{pmatrix},
\end{align*}
\]
et cetera, so that \(x = \sum_i a_i x_{\alpha_i} a_i \).

Now because \(\|y_1\| < 1, \ 1 - y_1^2 \) is invertible; therefore, from
\[
\sum_{i \geq 2} a_i^2 = \sum_{i \geq 2} \begin{pmatrix} 0 & 0 \\ 0 & y_i^2 \end{pmatrix} = 1 - a_1^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 - y_1^2 \end{pmatrix},
\]
we conclude that \(\sum_{i \geq 2} y_i y_i^* \) is invertible. Hence, Technique C allows us to write \(\sum_{i \geq 2} a_i x_{\alpha_i} a_i \) as a single term \(t_0^* x_0 a_0 \), for some \(x_0 \in K \). By passing to the polar decomposition of \(t_0 \) and absorbing the unitary part of \(t_0 \) into \(x_0 \), we may assume that \(\sum_{i \geq 2} a_i x_{\alpha_i} a_i = a_0 x_0 a_0 \) for some \(a_0 \geq 0 \) and \(x_0 \in K \).

From \(a_0^2 + a_1^2 = 1 \), we see that
\[
a_0 = \begin{pmatrix} 0 & 0 \\ 0 & y_0 \end{pmatrix}.
\]

In fact, \(a_0 \) and \(a_1 \) admit a further decomposition so that \(x \) is given by
\[
x = \begin{pmatrix} 1 & p_1 \\ 0 & 0 \end{pmatrix} x_{\alpha_1} \begin{pmatrix} 1 & p_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & p_0 \\ 0 & 1 \end{pmatrix} x_0 \begin{pmatrix} 0 & p_0 \\ 0 & 1 \end{pmatrix},
\]
where \(p_1 \geq 0 \) is invertible and is of norm \(\|p_1\| < 1 \). We are now in a position to make repeated use of Technique B.

For each \(\lambda \in (0, 1) \), we rewrite \(x \) (using Technique B) as
\[
x = \begin{pmatrix} \lambda & \lambda p_1 \\ \lambda p_1 & 0 \end{pmatrix} x_{\alpha_1} \begin{pmatrix} \lambda & \lambda p_1 \\ \lambda p_1 & 0 \end{pmatrix} + \begin{pmatrix} \sqrt{1 - \lambda^2} & (1 - \lambda^2 p_1^2)^{1/2} \\ (1 - \lambda^2 p_1^2)^{1/2} & 1 \end{pmatrix} x(\lambda) \begin{pmatrix} \sqrt{1 - \lambda^2} & (1 - \lambda^2 p_1^2)^{1/2} \\ (1 - \lambda^2 p_1^2)^{1/2} & 1 \end{pmatrix},
\]
where
\[
x(\lambda) = \begin{pmatrix} 1 & \sqrt{1 - \lambda^2} (1 - \lambda^2 p_1^2)^{-1/2} p_1 \\ \sqrt{1 - \lambda^2} (1 - \lambda^2 p_1^2)^{-1/2} p_1 & 0 \end{pmatrix} x_{\alpha_1} \begin{pmatrix} 1 & \sqrt{1 - \lambda^2} p_1 (1 - \lambda^2 p_1^2)^{1/2} \\ \sqrt{1 - \lambda^2} p_1 (1 - \lambda^2 p_1^2)^{1/2} & 0 \end{pmatrix} + \begin{pmatrix} 0 & (1 - \lambda^2 p_1^2)^{-1/2} p_0 \\ (1 - \lambda^2 p_1^2)^{-1/2} p_0 & 1 \end{pmatrix} x_0 \begin{pmatrix} 0 & p_0 (1 - \lambda^2 p_1^2)^{-1/2} \\ p_0 (1 - \lambda^2 p_1^2)^{-1/2} & 1 \end{pmatrix}.
\]

In the expression for \(x \), the (matrix) coefficients on \(x(\lambda) \) are invertible for all \(\lambda \in (0, 1) \). By grouping together the \(2 \times 2 \) upper left corner blocks of the coefficients in the expression for \(x \), that is,
\[
x = \begin{pmatrix} a(\lambda) & 0 \\ 0 & 0 \end{pmatrix} x_{\alpha_1} \begin{pmatrix} a(\lambda) & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} b(\lambda) & 0 \\ 0 & 1 \end{pmatrix} x(\lambda) \begin{pmatrix} b(\lambda) & 0 \\ 0 & 1 \end{pmatrix},
\]
we see that Technique B applies once again (though cosmetically modified since 1 appears in the bottom right corner rather than in the top left) to yield \(x \) as a proper \(C^* \)-convex combination
\[
x = t(\lambda)^*x^{''}t(\lambda) + s(\lambda)^*x(\lambda)s(\lambda).
\]
(This is a proper combination because \(b(\lambda) \) is invertible for all \(\lambda \in (0, 1) \).) Because \(x \) is \(C^* \)-extreme in \(K \), \(x(\lambda) \sim x \) for all \(\lambda \in (0, 1) \). Moreover, because \(x(\lambda) \) depends continuously on \(\lambda \) and because the unitary orbit of \(x \) is closed, \(x(1) \sim x \). This proves that \(x \) is reducible, for \(x(1) \) is given by
\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
x_{a_1}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix},
\]
or equivalently, \(x \sim x(1) = q_1x_{a_1}q_1 + q_1^+x_0q_1^+ \), where \(q_1 \) is a projection.

Recall that Technique C has \(x_0 \) as a \(C^* \)-convex combination of \(x_{a_2}, \ldots, x_{a_m} \) and so
\[
x(1) = q_1x_{a_1}q_1 + \sum_{i \geq 2} s_i^*x_{a_i}s_i,
\]
where \(q_1 + \sum_{i \geq 2} s_i^*s_i = 1 \) and \(q_1 \perp s_i \) for all \(i \geq 2 \). Observe that \(\sum_{i \geq 2} s_i^*s_i = 1 \mid_{\text{Im} q_1^+} \) and that the restriction of \(x(1) \) to \(\text{Im} q_1^+ \) is \(C^* \)-extreme in \(q_1^+Kq_1^+ \) (by the second of our two elementary facts stated prior to the theorem); hence, we may repeat our earlier arguments to conclude that one of the \(s_i \) is of norm 1, say \(s_2 \), and to conclude further that there exists a projection \(q_2 \) such that
\[
x \sim q_1x_{a_1}q_1 + q_2x_{a_2}q_2 + \text{(other terms)}.
\]
By exhausting this process after a finite number of steps, we see that \(x \sim \sum_i q_i x_{a_i}q_i \) for some projections \(q_i \) satisfying \(\sum_i q_i = 1 \). \(\square \)

4.2. Corollary. If \(\mathcal{P} \subset M_n \) is a compact set of normals, then \(K = C^* \text{-conv} \mathcal{P} \) has no nonnormal \(C^* \)-extreme points. Moreover, if \(X \subset \mathbb{C} \) is the convex hull of the eigenvalues of the elements of \(\mathcal{P} \), then \(x \in K \) is \(C^* \)-extreme in \(K \) if and only if \(x \) is normal and the eigenvalues of \(x \) are extreme points of \(X \).

Proof. It is easy to see (e.g., [4]) that \(K = C^* \text{-conv} \{ \zeta 1 : \zeta \text{ is an extreme point of } X \} \). If \(x \in K \) is \(C^* \)-extreme in \(K \), then Theorem 4.1 shows that \(x \) is a scalar matrix \(\zeta 1 \), or is reducible and of the form \(x = \sum q_i (\zeta_i 1)q_i \) for some projections \(q_i \) satisfying \(\sum q_i = 1 \). In either case, \(x \) is normal and the eigenvalues of \(x \) are extreme points of \(X \). Conversely, every normal \(x \in M_n \) with eigenvalues in the set of extreme points of \(X \) is \(C^* \)-extreme in \(K \) [4, Theorem 2]. \(\square \)

In [4, Theorem 3] it was shown that the nilpotent Jordan matrix of order \(n \) is an extreme point of \(K = C^* \text{-conv} \{ \zeta 1_n : \zeta^{n+1} = 1 \} \subset M_n \). Therefore, we now have a new set of examples, valid in each matrix algebra \(M_n \), of \(C^* \)-convex sets having linear extreme points that are not \(C^* \)-extreme. (Previously, the only known example was in \(M_2 \) [5].)

The methods of this paper also allow us to recover all of the \(C^* \)-extreme points found by Hopenwasser, Moore, and Paulsen of the \(C^* \)-convex set in \(M_2 \) of matrices with numerical radius not exceeding 1. As is demonstrated by Arveson [1, p. 302], this set is generated by \(\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \). In fact, we have the following general result.
4.3. **Theorem.** If $x \in M_2$, then the C^*-extreme points of C^*-$\text{conv}\{x\}$ are all of the matrices unitarily equivalent to x and all of the scalar matrices obtained from the extreme points of the numerical range of x.

Proof. If $x \in M_2$ is normal, then Corollary 4.2 yields the result. If $x \in M_2$ is nonnormal, then x is irreducible and so elements of the unitary orbit of x are C^*-extreme in C^*-$\text{conv}\{x\}$ (by Theorem 3.1), as are all scalar matrices ζI for which ζ is an extreme point of $W^1(x)$ [4, Theorem 1]. Conversely, suppose that z is C^*-extreme in C^*-$\text{conv}\{x\}$. If z is irreducible, then $z \sim x$; this follows from Theorem 4.1. If z is reducible, then it must be unitarily equivalent to a diagonal matrix, so let us say that

$$z = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

If $\alpha \neq \beta$, then there exist linearly independent unit vectors $\xi, \eta \in \mathbb{C}^2$ such that $(z\xi, \xi) = \alpha$ and $(z\eta, \eta) = \beta$. The matrices

$$t_1 = \sqrt{2}^{-1}[\xi, -\eta] \in M_2, \quad t_2 = \sqrt{2}^{-1}[\xi, \eta] \in M_2$$

are invertible and satisfy $t_1^*t_1 + t_2^*t_2 = I$ and $t_1^*xt_1 + t_2^*xt_2 = z$. But because z is C^*-extreme in C^*-$\text{conv}\{x\}$, the (reducible) matrix z must be unitarily equivalent to the (irreducible) matrix x, thereby yielding a contradiction. Thus, z must be of the form $(\begin{smallmatrix} \alpha & 0 \\ 0 & \alpha \end{smallmatrix})$. Plainly, in order for the scalar matrix αI to be extreme, let alone C^*-extreme, in $W^2(x)$, it is necessary that α be extreme in $W(x)$. \qed

5. **Matricial ranges of a hyponormal operator**

In their announcement [8], Pearcy and Salinas define the $n \times n$ reduc-\-ing matricial spectrum of $x \in B(H)$ to be the (possibly void) set $R^n(x)$ of $n \times n$ matrices of the form $\rho(x)$, where $\rho : C^*(x) \rightarrow M_n$ is a unital $*$-homomorphism and $C^*(x)$ is the unital C^*-algebra generated by x. By [8, Theorem 2], $\lambda \in R^1(x)$ if and only if there exists a sequence of unit vectors $\xi_j \in H$ satisfying $\lim_j \|(x - \lambda I)\xi_j\| = \lim_j \|(x - \lambda I)^*\xi_j\| = 0$. Therefore, if x is hyponormal, meaning that $x^*x - xx^* \geq 0$, then $R^1(x)$ is precisely the approximate point spectrum $\sigma_a(x)$ of x, and it is $\sigma(x)$ if x is in fact normal. Thus, the well-known result $W^1(x) = \text{conv} \sigma(x)$ for hyponormal x leads to $W^1(x) = \text{conv} R^1(x)$ (by making use of the fact that the extreme points of $\text{conv} \sigma(x)$ must be approximate eigenvalues). An interesting theorem of Stampfli goes even further: if $\lambda = (x\xi, \xi)$ is an extreme point of $W^1(x)$ for some unit vector $\xi \in H$, then $x\xi = \lambda\xi$ and $x^*\xi = \lambda^*\xi$ [10].

The purpose of this section is to show that these numerical range properties of hyponormal operators are present at the level of matricial ranges.

5.1. **Theorem.** The following statements hold for every hyponormal operator x acting on a Hilbert space H.

1. $W^n(x) = C^*$-$\text{conv} R^n(x)$.
2. The C^*-extreme points of $W^n(x)$ are elements of $R^n(x)$.
3. If $\Lambda = v^*xv$ is a C^*-extreme point of $W^n(x)$ for some isometry $v : C^n \rightarrow H$, then vv^* is an invariant projection of x and x^*.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. (1) It is slightly more convenient to translate \(x \) by a scalar \(\zeta \) so that the new hyponormal operator \(\tilde{x} = x - \zeta I \) has \(0 \in \sigma_f(\tilde{x}) \). Because the effect of translation on the matricial spectrum and the matricial range is just translation by the scalar matrix \(\zeta 1_n \), we assume without loss of generality that already \(0 \in \sigma_f(x) \). Because \(x \) is hyponormal, the dilation theorem [11] of Sz.-Nagy and Foiaş asserts that there exists a normal operator \(z \) on a Hilbert space \(H' \) and a contraction \(a : H \rightarrow H' \) such that \(x = a^*za \) and \(\sigma(z) \subset \sigma_f(x) \). The spectral inclusion as stated is in fact \(R^1(z) \subset R^1(x) \), due to the normality of \(z \) and the hyponormality of \(x \). If \(R^1(z) \) does not contain \(0 \), we can pass to the normal operator \(z \oplus 0 \) on \(H' \oplus \mathbb{C} \), having \(0 \) in its spectrum, so that \(x \) is now of the form \(a_0^*(z \oplus 0)a_0^* \), where \(a_0 \) is the contraction obtained by the composition \(a_0 = pqa \) with \(q \) denoting the canonical injection \(H' \rightarrow H' \oplus \mathbb{C} \) and \(p \) denoting the canonical projection \(H' \oplus \mathbb{C} \rightarrow H' \). Hence, again without loss of generality, we will assume that already \(0 \in R^1(z) \).

We first show that \(W^n(x) \subset W^n(z) \). Because \(0 \in (R^1(z) \oplus 1_n) \), it follows that \(\lambda^*W^n(z)\lambda \subset W^n(z) \) for every contraction \(\lambda \in M_n \), by Remark 7 of [6]. Suppose now that \(\phi \) is a unital completely positive map \(C^*(x) \rightarrow M_\mathbb{C} \); we will show that \(\phi(x) \in W^n(z) \). The argument runs similar to that of Lemma 4.2 in [9]. Consider the completely positive map \(\psi : C^*(z) \rightarrow M_\mathbb{C} \) defined by \(\psi(f) = \phi(a^*fa) \), with \(\lambda = \psi(1) \). For the positive contraction \(\lambda \) there exists \(b \geq 0 \) in \(M_\mathbb{C} \) such that if \(p \) is the projection of \(\mathbb{C}^n \) onto the range of \(\lambda \), then \(b\lambda b = p \) (we have \(b = \lambda^{-1/2} \) on the range of \(p \)). Choose any state \(\theta \) on \(C^*(z) \) and consider the unital completely positive map \(\omega : C^*(z) \rightarrow M_\mathbb{C} \) defined by \(\omega(f) = b\psi(f)b + \theta(f)(1 - p) \). From \(\lambda^{1/2}\omega(z)\lambda^{1/2} = \phi(x) \) it follows that

\[
\phi(x) \in \lambda^{1/2}W^n(z)\lambda^{1/2} \subset W^n(z),
\]

as desired.

Because the sets \(R^n(x) \) and \(R^n(z) \) consist solely of normal matrices, their \(C^* \)-convex hulls are determined by their eigenvalue sets; that is, \(R^1(x) \) and \(R^1(z) \) determine the \(C^* \)-convex hulls of \(R^n(x) \) and \(R^n(z) \), respectively. Hence,

\[
W^n(z) = C^*-\text{conv } R^1(z) \subset C^*-\text{conv } R^1(x) \subset W^n(x) \subset W^n(z).
\]

(2) By (1), \(W^n(x) \) is the \(C^* \)-convex hull of a compact set of normals; hence, if \(\Lambda \in W^n(x) \) is a \(C^* \)-extreme point of \(W^n(x) \), then Corollary 4.2 has that \(\Lambda \) must be normal and its eigenvalues must be extreme in the convex hull of the spectra of \(R^n(x) \) (viz., the eigenvalues of \(\Lambda \) are extreme points of \(\text{conv } R^1(x) = W^1(x) \)). Each eigenvalue of \(\Lambda \) determines a unital \(* \)-homomorphism \(C^*(x) \rightarrow \mathbb{C} \) and by passing to a direct sum of these homomorphisms, we obtain a unital \(* \)-homomorphism \(\rho : C^*(x) \rightarrow M_n \) such that \(\rho(x) \) is unitarily equivalent to \(\Lambda \).

(3) By (2), the \(C^* \)-extreme point \(\Lambda = v^*xv \) is normal and \(\sigma(\Lambda) \) is a subset of the extreme points of \(W^1(x) \). Thus, whenever \(\xi \) is a unit eigenvector of \(\Lambda \) with corresponding eigenvalue \(\lambda \), then \(\lambda = (xv^*\xi, v^*\xi) \) is an extreme point of \(W^1(x) \). By Stampfli's theorem, \(x(v^*\xi) = \lambda(v^*\xi) \) and \(x^*(v^*\xi) = \lambda^*(v^*\xi) \). Furthermore, as \(\Lambda \) is completely determined by its spectral structure, we conclude that \(xv = v\Lambda \) and \(x^*v = v\Lambda^* \), whence \(vv^* \) commutes with \(x \). □
REFERENCES