Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On duals of smooth plane curves


Author: Masaaki Homma
Journal: Proc. Amer. Math. Soc. 118 (1993), 785-790
MSC: Primary 14H45; Secondary 14N05
DOI: https://doi.org/10.1090/S0002-9939-1993-1143223-5
MathSciNet review: 1143223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for given two distinct smooth curves in the projective plane over an algebraically closed field, their duals in the dual plane coincide if and only if they are conics in characteristic two with the same center.


References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffith, and J. Harris, Geometry of algebraic curves, Vol. I, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1984. MR 770932 (86h:14019)
  • [2] M. Deuring, Invarianten und normalformen elliptischer funktionenkörper, Math. Z. 47 (1941), 47-56. MR 0006172 (3:266d)
  • [3] A. Hefez, Nonreflexive curves, Compositio Math. 69 (1989), 3-35. MR 986811 (90k:14028)
  • [4] M. Homma, Funny plane curves in characteristic $ p > 0$, Comm. Algebra 15 (1987), 1469-1501. MR 884025 (88c:14045)
  • [5] -, A souped-up version of Pardini's theorem and its application to funny curves, Compositio Math. 71 (1989), 295-302. MR 1022047 (91b:14034)
  • [6] H. Kaji, On the Gauss maps of space curves in characteristic $ p > 0$, Compositio Math. 70 (1989), 177-197. MR 996326 (90e:14032)
  • [7] S. Kleiman, Tangency and duality, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163-226. MR 846021 (87i:14046)
  • [8] -, Multiple tangents of smooth plane curves (after Kaji), Contemp. Math., vol. 116, Amer. Math. Soc., Providence, RI, 1991, pp. 71-84. MR 1108633 (92e:14048)
  • [9] E. Lluis, Variedades algebraicas con ciertas conditiones en sus tangentes, Bol. Soc. Mat. Mexicana (2) 7 (1962), 47-56. MR 0147479 (26:4995)
  • [10] A. Wallace, Tangency and duality over arbitrary fields, Proc London Math. Soc. (3) 6 (1956), 321-342. MR 0080354 (18:234b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14H45, 14N05

Retrieve articles in all journals with MSC: 14H45, 14N05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1143223-5
Keywords: Nonreflexive curve, dual curve, Gauss map
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society