The fat locus of Hilbert schemes of points

Author:
Marc Coppens

Journal:
Proc. Amer. Math. Soc. **118** (1993), 777-783

MSC:
Primary 14C05; Secondary 14E40

DOI:
https://doi.org/10.1090/S0002-9939-1993-1145416-X

MathSciNet review:
1145416

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a smooth projective variety over an algebraically closed field . Let be its Hilbert scheme of 0-dimensional subschemes of of degree . Let be the set of -rational points. We prove that the subset of points of corresponding to fat points on is a locally closed subset with respect to the Zariski topology.

**[1]**M. V. Catalisano,*Linear systems of plane curves through fixed*"*fat*"*points of*, J. Algebra**142**(1991), 81-100. MR**1125206 (93b:14017)****[2]**A. Gimigliano,*Our thin knowledge of fat points*, The Curves Seminar at Queen's**6**; Queen's Papers in Pure and Appl. Math.**83**(1989). MR**1036032 (91a:14007)****[3]**R. Hartshorne,*Algebraic geometry*, Graduate Texts in Math., vol. 52, Springer-Verlag, Berlin and New York, 1977. MR**0463157 (57:3116)****[4]**D. Mumford,*Lectures on curves on an algebraic surface*, Ann. of Math. Stud., no 59, Princeton Univ. Press, Princeton, NJ, 1966. MR**0209285 (35:187)****[5]**G. Paxia,*On flat families of fat points*, Proc. Amer. Math. Soc.**112**(1991), 19-23. MR**1055777 (91m:14008)****[6]**E. Sernesi,*Topics on families of projective schemes*, Queen's Papers in Pure and Appl. Math.**73**(1986). MR**869062 (88b:14006)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14C05,
14E40

Retrieve articles in all journals with MSC: 14C05, 14E40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1145416-X

Article copyright:
© Copyright 1993
American Mathematical Society