Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The commutant of a certain compression


Author: William T. Ross
Journal: Proc. Amer. Math. Soc. 118 (1993), 831-837
MSC: Primary 47B38; Secondary 47A20, 47B35
DOI: https://doi.org/10.1090/S0002-9939-1993-1145951-4
MathSciNet review: 1145951
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be any bounded region in the complex plane and $ K \subset G$ be a simple compact arc of class $ {C^1}$. Let $ {A^2}(G\backslash K)$ (resp. $ {A^2}(G)$) be the Bergman space on $ G\backslash K$ (resp. $ G$). Let $ S$ be the operator multiplication by $ z$ on $ {A^2}(G\backslash K)$ and $ C = {P_\mathcal{N}}S{\vert _\mathcal{N}}$ be the compression of $ S$ to the semi-invariant subspace $ \mathcal{N} = {A^2}(G\backslash K) \ominus {A^2}(G)$. We show that the commutant of $ {C^{\ast}}$ is the set of all operators of the form $ {A^{ - 1}}{M_h}A$, where $ h$ is a multiplier on a certain Sobolev space of functions on $ K$ and $ (Af)(w) = \int_G {f(z){{(\overline z - \overline w )}^{ - 1}}dA(z)(w \in K)} $. We also use multiplier theory in fractional order Sobolev spaces to obtain further information about $ C$.


References [Enhancements On Off] (What's this?)

  • [Ax] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44. MR 671320 (84b:30052)
  • [AAS] D. R. Adams, N. Aronszajn, and K. T. Smith, Theory of Bessel potentials (Part II), Ann. Inst. Fourier (Grenoble) 17 (1962), 1-135. MR 0228702 (37:4281)
  • [ACM] S. Axler, J. B. Conway, and G. McDonald, Toeplitz operators on Bergman spaces, Canad. J. Math. 34 (1982), 466-483. MR 658979 (83i:47034)
  • [AFV] C. Apostol, C. Fioaş, and D. Voiculescu, Some results on non-quasitriangular operators. IV, Rev. Roumaine Math. Pures Appl. 18 (1973).
  • [AS] N. Aronszajn and K. T. Smith, Theory of Bessel potentials (Part I), Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. MR 0143935 (26:1485)
  • [C1] J. B. Conway, The dual of a subnormal operator, J. Operator Theory 5 (1981), 195-211. MR 617974 (84j:47037)
  • [C2] -, Subnormal operators, Pitman Press, Boston, MA, 1981.
  • [C3] -, Spectral properties of certain operators on Hardy spaces of planar domains, Integral Equations Operator Theory 10 (1987), 659-706. MR 904484 (88h:47040)
  • [Liz] P. I. Lizorkin, Boundary properties of functions from 'weighted' classes, Dokl. Akad. Nauk SSSR 132 (1960), 514-517; English transl., Soviet Math. Dokl. 1 (1960), 589-593. MR 0123103 (23:A434)
  • [MS] V. G. Maz'ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Pitman Press, Boston, MA, 1985.
  • [R1] W. T. Ross, Analytic continuation in Bergman spaces and the compression of certain Toeplitz operators, Indiana Univ. Math. J. 40 (1991), 1363-1386. MR 1142719 (92m:47055)
  • [R2] -, Multiplication operators on Bergman spaces and invariant subspaces, thesis, Univ. of Virgina, 1991.
  • [S] D. Sarason, On spectral sets having connected complement, Acta Sci. Math. Szeged 26 (1965), 261-266. MR 0188797 (32:6229)
  • [Str] R. Strichartz, Multipliers on fractional order Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. MR 0215084 (35:5927)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38, 47A20, 47B35

Retrieve articles in all journals with MSC: 47B38, 47A20, 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1145951-4
Keywords: Bergman spaces, multiplication operators, Sobolev spaces, multipliers
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society