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A SHARP BOUND FOR THE REGULARITY INDEX
OF FAT POINTS IN GENERAL POSITION

M. V. CATALISANO, N. V. TRUNG, AND G VALLA

(Communicated by Louis J. Ratliff, Jr.)

Abstract. A bound is given for the regularity index of the coordinate ring of

a set of fat points in general position in PJJ. The bound is attained by points

on a rational normal curve.

Introduction

Let Pi, ... , Ps be distinct points in P£ , k an algebraically closed field,

and let m\, ... ,ms be positive integers. If p\, ... , ps are the prime ideals

in R := k[Xo, ... , Xn] corresponding to the points P\, ... , Ps, we let Z :=

/niPi H-\-msPs be the zero cycle defined by the ideal p™' n p™2 n • • • n pfs. If

w, > 2 the point P, is called a fat point of Z , a self-explanatory term. There

is some interest in calculating the Hilbert function and the Betti numbers of the

graded ring
A = R/(P^np2n>n---np?>),

which is the homogeneous coordinate ring of Z .
It is well known that A - 0(>o^( is a one-dimensional Cohen-Macaulay

graded ring whose multiplicity is e := £j»i (m'+H'~l) > trie degree of Z . This

implies that the Hilbert function HA(t) := dimk At of A is strictly increasing

until it reaches the multiplicity, at which it stabilizes. The least integer t for

which HA(t) = e is called the regularity index of A and denoted by r(A). Note
that since A is Cohen-Macaulay, if L is any linear form not vanishing at any

of the points p , ... , Ps, then the artinian ring B = A/LA has the property
that Bt — 0 iff t > r(A). So, for an artinian ring B we shall call its regularity

the least integer t such that HB(t) = 0.

Different results have been given on the postulation of the scheme Z in

the case of fat points (see [C, DG, CI, C2, G, Gl, G2, H, S]), but they have
been proved mostly for n — 2; the papers [Hi] and [A] by Hirschowitz and

Alexander, respectively, cover most of the known results for n > 3 .

In this paper, by using elementary linear algebra, we give an upper bound for

the regularity index of A when the points are in general position (see Theorem
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6). This bound is attained for points lying on a rational normal curve (see

Proposition 7). When n = 2 we get the same bound found in [CI] (see also

[CG, Theorem 3.3]). Our approach is purely algebraic but in the last part of

the paper we also give a geometric interpretation of the proofs.

Main result

In this section we state and prove the main result of the paper, Proposition

5.
Many of the proofs require induction arguments on the number of points

being considered. We begin by finding the index of regularity of the ring

A = k[X0, ... , X„]/pa, where (with no loss of generality) we assume p =

(X\, ... , Xn) corresponds to the point P = (1, 0, ... , 0). Since XQ $. p we

can use our observation above on the ring B = A/XqA to see that r(A) = a - 1 .

Lemma 1. Let P\, ... , Pr, P be distinct points in P£ and let p be the defining

prime ideal of P. If nt\, ... ,mr, and a are positive integers, J :— p™1 n p™1 n
• • • n p™r, and I := J r\pa, then

r(R/I) = max{a - 1, r(R/J), r(R/(J + pa))}.

Proof. From the exact sequence of vector spaces

o - it->Jt e (pa)t -»(/ + pa)t - o

it is clear that

Hr/i(1) = HR/pa(t) + HR/J(t) - HRi(J+pa)(t)

for every integer t. Since the Hilbert functions of the one-dimensional Cohen-

Macaulay rings P/7, R/pa , and R/J are strictly increasing until they reach the

multiplicity of the ring in question and since R/(J + pa) is artinian, we see that

HR/I(t) = e(R/I) if and only if HR/^(t) = a-\ = e(R/pa), HR/J(t) = e(R/J),

and HR^j+pa^(t) = 0. The conclusion follows.

As a consequence of the above result we get the following lower bound for

the regularity index of any zero-cycle in P£ .

Corollary 2. Let s > 2, P\, ... , Ps be distinct points in P£, and m\ > m2>

■■■ > ms be positive integers. If I := p™1 n p™2 n • • • n p?s then r(R/I) >

mx + m2 - \.

Proof. We may assume pi = (X0, X2, ... , X„) and p2 = (Xx, ... , X„), and

we let 7 = p7"npf n---npf*. Then it is clear that X^~lX^-1 i p^+p™2.

Since J+p22 c p^+p^2, it follows that X™'-XX™2~X $ J+p22. This proves

that r(R/(J + p22)) > m\ + m2- \ and the conclusion follows by the above

lemma.

Remark. If we fix the exponents m\,... ,ms, then the best lower bound for

r(R/I) is given by the regularity index of s generic fat points with those expo-
nents. This bound is difficult to compute (see the papers [Hi, A] for the special

case m\ = ■■■ = ms = 2).

If we want to use the formula given in Lemma 1 then we need to find a good

bound for the regularity index of the graded ring R/(J + pa). In the following

lemma we give some basic properties of this artinian ring.
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Lemma 3. Let P\, ... , Pr,P be distinct points in P£ and p the defining prime

idealof P. Ifm\, ... , mr, a are positive integers and J :— p^'np^n-- ■r\pr"r,

then
(a) HR/iJ+pa}(t) = 2X0 dimk[(J + p')/(J + pi+x)]t for every t>0.

(b) If P = (1, 0, ... , 0) then [(J + p')/(J + pi+x)]t = 0 if and only if i > t
or Xq~'M £ J + p'+1 for every monomial M of degree i in X\, ... , Xn .

Proof. The first assertion follows by using the exact sequences

0 - (J + p')/(J + p'+1) ^ R/(J + pi+l) - R/(J + p') - 0

for i = 1,..., a — 1. As for (b) it follows easily from the assumption P =

(1, 0, ... , 0) which implies p = (Xx,... , X„).

Now we need the following result, which has a combinatorial flavour. Recall

that a set of points in P£ is said to be in general position if no h + 2 of them

are on an /z-plane for h < n .

Lemma 4. Let P\, ... , Pr, P be distinct points in general position in Pg , let

mi > ■■■ > mr be positive integers, and let J := p™1 n p™2 n • • • n p™r. If t is

an integer such that nt > YJm, and t > m\, we can find t hyperplanes, say

L\,... ,Lt, avoiding P such that Lx ■ ■ ■ Lt g J.

Proof. If r < n, by the general position assumption we can find a hyperplane

L avoiding P and passing through P{, ... , Pr. Since / > wj, we have

V £ p\ n p2 n • • • n p\ c J.

Hence we get the conclusion if r < n and, in particular, if YJ m, < n. Thus

we may assume r > n + 1 and argue by induction on YJ mi ■ By the general

position assumption we may find a hyperplane, say L, avoiding P and passing
through Pi, ... , Pn. Since nt > YJ m,, we have

n(t - 1) > ^2 m,■- n - (mi - 1) h-h (m„ - 1) + mn+i H-Ymr.

On the other hand, since t > mi and nt > YJ m, > (n + l)m„+i, it follows that

t - 1 > {wi - 1, ... , mn - 1, mn+i, ... ,mr}.

Thus, by the inductive assumption we can find t-1 hyperplanes, say L2, ... , Lt

avoiding P and such that

Lj-L^^-'n-.np^'n^'n-npr'.

This implies LL2 ■••Lt € J and the conclusion follows.

Now we come to the main result of this paper.

Proposition 5. Let P\, ... , Pr, P be distinct points in general position in Pk

and p the defining prime ideal of P. Further let m\ > ■■•> mr>a be positive
integers, J := p™1 n p™2 n • • • n pj"r, m := YJ mx■, and t the least integer such

that nt > m + a- 1. Then

r(R/(J + pa)) < max{wi + a - I, t}.

Proof. Let us assume P = (1, 0, ... , 0) and so p = (X\, ... , Xn). If r < n
we can find a hyperplane, say L, such that L contains P\, ... , Pr and does

not contain P. Then, by scaling if necessary, L — X0 + 77 for some linear form
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H £ p. Since it is clear that Lm> £ J, we get X™] £ J + p. Let i be any integer

0 < i < a - 1, and let Af be a monomial of degree i in X\,... , Xn. Then

M £ p''-, hence X^M £j + p'+1, which implies X^'^'M £j + p'+1. By
Lemma 3 we get r(R/(J + pa)) < mi + a - 1, as desired.

Now let r > n; after a suitable change of coordinates we may further assume

that P, = (0, 1,0,...,0),...)P„ = (0,0,...,1).
Let h = max{mi + a - 1, t} . By Lemma 3(a) we need to prove that

[(J + pl)/(J + pi+l)]h = 0

for every / = 0, ... , a - 1. Since h > i, by Lemma 3(b) this is equivalent to

proving that

Xfi-'M £J + p'+1
for every i — 0, ... , a-l and every monomial M of degree i in X\,..., Xn .

Let M + X\X ■■■ XCn with YJ ck = i. Then my + Cj > mj > a > a - 1 > i, hence
mj - i + Cj > 0.

On the other hand, for every j = 1,...,«, we have c, < i, hence w; - / +

Cj < mj. Since h > mi + a - 1 and i < a - 1, this implies

h - i >mi > max{wi —i + c\,... ,mn — i + cn, m„+i, ..., mr}.

Moreover, h > t, hence nh > m + a - 1. This implies

n r

n(h -i)>m + a-\-ni>m + i-ni = ^(m, - i + Cj) + ^ mj.

;'=1 j=n+\

Thus we may use Lemma 4 to find h — i hyperplanes, say F\, ... , F^-i, avoid-

ing P and such that

P, • • • Fh_t £ p^'-'+C| n• • • np™"-i+c- np™;\> n-n^'.

Since it is clear that

we get MFi ■ ■ ■ Fh_t £ J .
But the hyperplanes F} do not contain P, hence for every j = \, ... , h -

i we can write P, — Xo + Gj for suitable linear forms (7, G p. We get

M(X0 + Gi)---(X0 + Gh-i) £ J and since MGj £ p'+1 for every j, this

implies Xq~'M £ J + p'+x as wanted.

From now on if a is a rational number, denote by [a] its integer part. With

this notation it is clear that for positive integers q and n we have

q + n > n[(q + n - \)/n] > q.

This implies

[(q + n - \)/n] = min{t\tn > q}.

Theorem 6. Let s > 2, Pi, ... , Ps be distinct points in general position in P"k ,

and m\ > • • • > ms be positive integers. Further let I — p™' n • • • n p™s. Then

r(P/I) < max Imi + m2- I,   \^2m' + K_2]/n  | .

Proof. Let / := p™x n • • • n p^j1 . By Lemma 1 we have

r(R/I) = max{ws - 1, r(R/J), r(R/(J + pf>))}.
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Let 5 = 2. Since mi + m2 - \ > min{t\nt > mi + m2 - 1} , we get

r(P/(/ + p^))<m,+m2-l

by Proposition 5. Note that r(R/J) = r(R/p™1) = mx - 1 . Then r(R/I) <
m{ + m2 - 1 and the conclusion follows in this case. Thus we may argue by

induction on 5. By the inductive assumption we have

r(R/J) < max< mi +m2 - 1,    I ̂ m,■ + n - 2 j /«   >,

and by the above proposition

r(R/(J + p?'))< max I m{ + ms - 1,    I J] m,,+ n - 2 J /n   I.

Hence the conclusion is immediate.

We prove now that the bound found in Theorem 6 is sharp for points lying

on a rational normal curve.

Proposition 7. Let s > 2, Pi, ... , Ps be distinct points on a rational normal

curve in Pk, and mi > ■■• >ms be positive integers. Further let 7 = p™1 n • •• n

pf«. Then

r(R/I) = max lm{ + m2 - 1, [QT m,■ + n - 2) /«] } .

Proof. We recall that all rational normal curves in P" are isomorphic under a

linear change of coordinates. Hence, without loss of generality, we may assume

that the points are on the curve with parametric equations

X0 = tn, Xi = tn~xu, ... ,X„-i =tun~x,  Xn = un.

Also it is clear that a rational normal curve in P" is a nondegenerate curve

of degree n, which implies that the points are in general position. Put t :=

[(YJ trii + n — 2)/n]. If t < mi + m2 - 1 , the conclusion follows by Corollary 2

and Theorem 6. Hence we may assume that t > mi + m2 and, as usual, that

ps = (Xi, ... ,Xn). Further we let J = p™[ n p™2 n ■ • ■ n pfjj' . We claim that

x(t-\)-(m,-l)xm,-\   ̂   J + tf?>.

In fact, if ^'-D-^-D^-i G j + p«., then for some P 6 [pTs]i-i Q P?s~l

we have 77:= jK'-i)-(™.-i)^-i+f 6 /# since ^-O-C-w-Dj^-i e p«*-i >

we get 77 G 7 n pf5-1 . By the definition of t and the remark before Theorem

6, we have YJ/w,: - 1 > n(t - 1), hence by Bezout's theorem we get that the

hypersurface corresponding to 77 contains the rational curve C on which are

our points. This implies that 77 must vanish on the point (1, a, a2, ... , a")

for every a £ k and thus that ams~l + F(l, a, a2, ... , a") = 0 for every

a £ k.
Since F £ pfs, we have P(l, a, a2, ... , a") - amsG(a) for some poly-

nomial G £ k[X], hence we get am'~x + amsG(a) = 0 for every a £ k, a

contradiction. This proves the claim. But then

^-IHm,-!)^,-!   g  J + p?*.
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This implies r(R/(J + p™s)) > t. By Lemma 1 we get r(R/I) > t and the

conclusion follows from the above theorem.

Remark. The above bound for the regularity index can be attained also by fat

points not lying on a rational normal curve (see [CI, §6]).

We end this section with the following result, which deals with the extremal

case r(R/I) = mi + m2 - 1 (see Corollary 2).

Corollary 8. Let n>3, 2<s<n + 2, and let Pi, ... , Ps be distinct points in

general position in P" . If 2 < mi > m2 > ■ ■ ■ > ms > 0 are given integers and

I = p™' n • • • n pfJ, then r(R/I) = ml+m2-\.

Proof. By Corollary 2 and Theorem 6 we need only prove that n(mi +m2- 1) >

YJ m,; - 1 or, equivalently,

(mi + m2- \)(n - 1) - (/tj3 h-h ms) > 0.

But we have

(mi +m2- l)(n - 1) - (m3 -\-\-ms)

> (mi + m2 - l)(n - 1) - nm2 = (mi - \)(n- 1) - m2

> (mi - l)(n - 1) - w, = (mi - l)(n - 2) - 1.

The conclusion follows from the assumptions n > 3 and mi > 2.

A GEOMETRIC INTERPRETATION

We recall that if Z is the zero-dimensional subscheme of P£ corresponding

to the ideal 7 = p™1 n •• ■ n p?s, then for every integer t we can consider the

linear system Sf, of all hypersurfaces of degree t containing Z as a subscheme.

It is clear that

dim^) = dimk(I,) - 1 = dimk(R<) - HR/I(t) - 1

= dimk(R,) - e + h(5f,) - 1,

where h(^ft) :— e - HR/I(t) is called the superabundance of J2?. The linear

system Sft is said to be regular iff h(5Ct) = 0, that is, 77R//(/) = e or, with the
notation of the above sections, r(R/I) < t.

We fix the following notation: J := p™1 n • ■ • n pfJ, 7 := J n pa , V :=

Jnpa~x , e = e(R/I), e' = e(R/I'). It is clear that

^t(m'+;"')+C+r2)'
hence

By using the formula for the dimension of the sum of two vector spaces in terms

of the dimensions of the summands and that of the intersection, we have

dimfc(7r') - dim*(7() = dim(pa-7pfl), - dim((7 + pa~l)/(J + pa))t

< dim(pa-'/pa)r <e-e'.
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Lemma 9. The linear system Jzft is regular if and only if the linear system Jz^'

is regular and dimk(I'/I)t > e - e'.

Proof. The conclusion follows immediately from the above remark and the

exact sequence 0 -f /'// -> P/7 -> R/I' -* 0.

Now it is clear that in order to prove Theorem 6 using induction on the sum

of the multiplicities, we need only prove that there exist e — e' forms in 7/ that

are fc-linearly independent modulo I,. This can be proved as in Proposition 5.

This approach has a nice geometric interpretation. We shall see that the

existence of such e — e' forms is equivalent to the fact that the hypersurfaces

of S?t' separate the directions at the fat point P. To explain this fact we need

some more notation.

Let n be the hyperplane X0 = 0. We may consider n as P£_1 with coor-

dinate ring S = k[Xi, ... , X„]. Since

dimk(Sa-i)= y   aU_ j    )=e-e',

we may find e - e' points in P£_1, say Qi, ... , Qe-e', that are not on a

hypersurface of degree a-1 in P£_1. This implies that for every i = I, ... , e-

e', there is a form C7, G Sa-i such that Gi(Qi) ^ 0 and Gj(Qj) = 0 if j' ± i.
We consider for every i = I, ... , e - e' the line L, connecting P and <2,.

With this notation we say that the hypersurfaces of Jzff separate the directions

at the fat point P if there exist hypersurfaces Pi, ... , Fe-ei in ^ such that

each P, contains the subscheme aP of Lj for every ; ^ /' and does not

contain the subscheme aP of L,.

Proposition 10. There exist e-e' elements in l[ that are k-linearly independent

modulo It if and only if the hypersurfaces of -£f separate the directions at the
fat point P.

Proof. Let Pi, ... , Fe-ei be the elements of I', that are /c-linearly independent

modulo It. Since dim/t(pa_1/Pa)i = e — e' and Pi, ... , Pe_e/ are rc-linearly

independent also modulo pa, , they form a basis for the vector space (pa~' /pa)t ■

The elements Gi, ... , Ge-e> denned above can be considered as elements of
pa~x . Hence for every i = \, ... , e - e' we can write

Xt-(a-l)Gi = YJhjF] + Hl

for suitable kj £ k and 77, G pa . Due to the choice of Gi, ... , Ge-e* it is easy

to see that for / running from 1 to e - e', the hypersurfaces corresponding to

^kijFj separate the directions at the fat point P .

Conversely, let Pi, ... , Pe-f' be the elements of I', given by our assump-

tion. If Y,^Fi € h, then EA,P, £ pa. It follows that YL^iFi contains the
subscheme aP of L, for every i. This clearly implies A, = 0 for every /, and

we are done.
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